21,117 research outputs found
Varying Cu-Ti hybridization near the Fermi energy in CuTiSe: Results from supercell calculations
The properties of CuTiSe are studied by band structure
calculation based on the density functional theory for supercells. The
density-of-states (DOS) for =0 has a sharply raising shoulder in the
neighborhood of the Fermi energy, , which can be favorable for spacial
charge modulations. The Cu impurity adds electrons and brings the DOS shoulder
below . Hybridization makes the Ti-d DOS at , the electron-phonon
coupling and the Stoner factor very large. Strong pressure dependent properties
are predicted from the calculations, since the DOS shoulder is pushed to higher
energy at a reduced lattice constant. Effects of disorder are also expected to
be important because of the rapidly varying DOS near .Comment: 5 pages, 4 figures 2 table
Production of superpositions of coherent states in traveling optical fields with inefficient photon detection
We develop an all-optical scheme to generate superpositions of
macroscopically distinguishable coherent states in traveling optical fields. It
non-deterministically distills coherent state superpositions (CSSs) with large
amplitudes out of CSSs with small amplitudes using inefficient photon
detection. The small CSSs required to produce CSSs with larger amplitudes are
extremely well approximated by squeezed single photons. We discuss some
remarkable features of this scheme: it effectively purifies mixed initial
states emitted from inefficient single photon sources and boosts negativity of
Wigner functions of quantum states.Comment: 13 pages, 9 figures, to be published in Phys. Rev.
Generation of macroscopic superposition states with small nonlinearity
We suggest a scheme to generate a macroscopic superposition state
(Schrodinger cat state) of a free-propagating optical field using a beam
splitter, homodyne measurement and a very small Kerr nonlinear effect. Our
scheme makes it possible to considerably reduce the required nonlinear effect
to generate an optical cat state using simple and efficient optical elements.Comment: Significantly improved version, to be published in PRA as a Rapid
Communicatio
Conditional Production of Superpositions of Coherent States with Inefficient Photon Detection
It is shown that a linear superposition of two macroscopically
distinguishable optical coherent states can be generated using a single photon
source and simple all-optical operations. Weak squeezing on a single photon,
beam mixing with an auxiliary coherent state, and photon detecting with
imperfect threshold detectors are enough to generate a coherent state
superposition in a free propagating optical field with a large coherent
amplitude () and high fidelity (). In contrast to all
previous schemes to generate such a state, our scheme does not need photon
number resolving measurements nor Kerr-type nonlinear interactions.
Furthermore, it is robust to detection inefficiency and exhibits some
resilience to photon production inefficiency.Comment: Some important new results added, to appear in Phys.Rev.A (Rapid
Communication
Generation of distributed entangled coherent states over a lossy environment with inefficient detectors
Entangled coherent states are useful for various applications in quantum information processing, but they are sensitive to loss.We propose a scheme to generate distributed entangled coherent states over a lossy environment in such away that the fidelity is independent of the losses at detectors heralding the generation of the entanglement. We compare our scheme with a previous one for the same purpose [Ourjoumtsev et al., Nat. Phys. 5, 189 (2009)] and find parameters for which our scheme results in superior performance
Coherent manipulation of electronic states in a double quantum dot
We investigate coherent time-evolution of charge states (pseudo-spin qubit)
in a semiconductor double quantum dot. This fully-tunable qubit is manipulated
with a high-speed voltage pulse that controls the energy and decoherence of the
system. Coherent oscillations of the qubit are observed for several
combinations of many-body ground and excited states of the quantum dots.
Possible decoherence mechanisms in the present device are also discussed.Comment: RevTe
Fault-tolerant linear optical quantum computing with small-amplitude coherent states
Quantum computing using two optical coherent states as qubit basis states has
been suggested as an interesting alternative to single photon optical quantum
computing with lower physical resource overheads. These proposals have been
questioned as a practical way of performing quantum computing in the short term
due to the requirement of generating fragile diagonal states with large
coherent amplitudes. Here we show that by using a fault-tolerant error
correction scheme, one need only use relatively small coherent state amplitudes
() to achieve universal quantum computing. We study the effects
of small coherent state amplitude and photon loss on fault tolerance within the
error correction scheme using a Monte Carlo simulation and show the quantity of
resources used for the first level of encoding is orders of magnitude lower
than the best known single photon scheme. %We study this reigem using a Monte
Carlo simulation and incorporate %the effects of photon loss in this
simulation
- …