It is shown that a linear superposition of two macroscopically
distinguishable optical coherent states can be generated using a single photon
source and simple all-optical operations. Weak squeezing on a single photon,
beam mixing with an auxiliary coherent state, and photon detecting with
imperfect threshold detectors are enough to generate a coherent state
superposition in a free propagating optical field with a large coherent
amplitude (α>2) and high fidelity (F>0.99). In contrast to all
previous schemes to generate such a state, our scheme does not need photon
number resolving measurements nor Kerr-type nonlinear interactions.
Furthermore, it is robust to detection inefficiency and exhibits some
resilience to photon production inefficiency.Comment: Some important new results added, to appear in Phys.Rev.A (Rapid
Communication