408 research outputs found

    Density Fluctuations in Thermal Inflation and Non-Gaussianity

    Full text link
    We consider primordial fluctuations in thermal inflation scenario. Since the thermal inflation drives about 10 ee-folds after the standard inflation, the time of horizon-exit during inflation corresponding to the present observational scale shifts toward the end of inflation. It generally makes the primordial power spectrum more deviated from a scale-invariant one and hence renders some models inconsistent with observations. We present a mechanism of generating the primordial curvature perturbation at the end of thermal inflation utilizing a fluctuating coupling of a flaton field with the fields in thermal bath. We show that, by adopting the mechanism, some inflation models can be liberated even in the presence of the thermal inflation. We also discuss non-Gaussianity in the mechanism and show that large non-Gaussianity can be generated in this scenario.Comment: 15 pages, 1 figures, minor change

    Delay-induced Synchronization Phenomena in an Array of Globally Coupled Logistic Maps

    Get PDF
    We study the synchronization of a linear array of globally coupled identical logistic maps. We consider a time-delayed coupling that takes into account the finite velocity of propagation of the interactions. We find globally synchronized states in which the elements of the array evolve along a periodic orbit of the uncoupled map, while the spatial correlation along the array is such that an individual map sees all other maps in his present, current, state. For values of the nonlinear parameter such that the uncoupled maps are chaotic, time-delayed mutual coupling suppress the chaotic behavior by stabilizing a periodic orbit which is unstable for the uncoupled maps. The stability analysis of the synchronized state allows us to calculate the range of the coupling strength in which global synchronization can be obtained.Comment: 8 pages, 7 figures, changed content, added reference

    Non-linear corrections to inflationary power spectrum

    Full text link
    We study non-linear contributions to the power spectrum of the curvature perturbation on super-horizon scales, produced during slow-roll inflation driven by a canonical single scalar field. We find that on large scales the linear power spectrum completely dominates and leading non-linear corrections remain totally negligible, indicating that we can safely rely on linear perturbation theory to study inflationary power spectrum. We also briefly comment on the infrared and ultraviolet behaviour of the non-linear corrections.Comment: (v1) 14 pages, 2 figures; (v2) references added and discussions expanded, including a new version of Figure 2, to appear in Journal of Cosmology and Astroparticle Physic

    Square to stripe transition and superlattice patterns in vertically oscillated granular layers

    Full text link
    We investigated the physical mechanism for the pattern transition from square lattice to stripes, which appears in vertically oscillating granular layers. We present a continuum model to show that the transition depends on the competition between inertial force and local saturation of transport. By introducing multiple free-flight times, this model further enables us to analyze the formation of superlattices as well as hexagonal lattice

    Modular Cosmology, Thermal Inflation, Baryogenesis and Predictions for Particle Accelerators

    Full text link
    Modular cosmology is plagued by overproduction of unwanted relics, gravitinos and especially moduli, at relatively low energy scales. Thermal inflation provides a compelling solution to this moduli problem, but invalidates most baryogenesis scenarios. We propose a simple model in which the MSSM plus neutrino mass term (LHu)2(LH_u)^2 is supplemented by a minimal flaton sector to drive the thermal inflation, and make two crucial assumptions: the flaton vacuum expectation value generates the μ\mu-term of the MSSM and mL2+mHu2<0m_L^2 + m_{H_u}^2 < 0. The second assumption is particularly interesting in that it violates a well known constraint, implying that there exists a nearby deep non-MSSM vacuum, and provides a clear signature of our model which can be tested at future particle accelerators. We show that our model leads to thermal inflation followed by Affleck-Dine leptogenensis along the LHuLH_u flat direction. A key feature of our leptogenesis scenario is that the HuHdH_uH_d flat direction is also induced to temporarily acquire a large value, playing a crucial role in the leptogenesis, as well as dynamically shielding the field configuration from the deep non-MSSM minimum, ensuring that the fields relax into our MSSM vacuum.Comment: v3; 19 pages, 3 figures; added a reference for section

    Simple models of small world networks with directed links

    Full text link
    We investigate the effect of directed short and long range connections in a simple model of small world network. Our model is such that we can determine many quantities of interest by an exact analytical method. We calculate the function V(T)V(T), defined as the number of sites affected up to time TT when a naive spreading process starts in the network. As opposed to shortcuts, the presence of un-favorable bonds has a negative effect on this quantity. Hence the spreading process may not be able to affect all the network. We define and calculate a quantity named the average size of accessible world in our model. The interplay of shortcuts, and un-favorable bonds on the small world properties is studied.Comment: 15 pages, 9 figures, published versio

    Non-Gaussian isocurvature perturbations in dark radiation

    Full text link
    We study non-Gaussian properties of the isocurvature perturbations in the dark radiation, which consists of the active neutrinos and extra light species, if exist. We first derive expressions for the bispectra of primordial perturbations which are mixtures of curvature and dark radiation isocurvature perturbations. We also discuss CMB bispectra produced in our model and forecast CMB constraints on the nonlinearity parameters based on the Fisher matrix analysis. Some concrete particle physics motivated models are presented in which large isocurvature perturbations in extra light species and/or the neutrino density isocurvature perturbations as well as their non-Gaussianities may be generated. Thus detections of non-Gaussianity in the dark radiation isocurvature perturbation will give us an opportunity to identify the origin of extra light species and lepton asymmetry.Comment: 32 pages, 7 figure

    Combined local and equilateral non-Gaussianities from multifield DBI inflation

    Full text link
    We study multifield aspects of Dirac-Born-Infeld (DBI) inflation. More specifically, we consider an inflationary phase driven by the radial motion of a D-brane in a conical throat and determine how the D-brane fluctuations in the angular directions can be converted into curvature perturbations when the tachyonic instability arises at the end of inflation. The simultaneous presence of multiple fields and non-standard kinetic terms gives both local and equilateral shapes for non-Gaussianities in the bispectrum. We also study the trispectrum, pointing out that it acquires a particular momentum dependent component whose amplitude is given by fNLlocfNLeqf_{NL}^{loc} f_{NL}^{eq}. We show that this relation is valid in every multifield DBI model, in particular for any brane trajectory, and thus constitutes an interesting observational signature of such scenarios.Comment: 38 pages, 11 figures. Typos corrected; references added. This version matches the one in press by JCA

    The trispectrum in ghost inflation

    Full text link
    We calculate the trispectrum in ghost inflation where both the contact diagram and scale-exchange diagram are taken into account. The shape of trispectrum is discussed carefully and we find that the local form is absent in ghost inflation. In general, for the non-local shape trispectrum there are not analogous parameters to Ï„NLloc.\tau_{NL}^{loc.} and gNLloc.g_{NL}^{loc.} which can completely characterize the size of local form trispectrum.Comment: 19 pages, 8 figures; clarifications and corrections added, version accepted for publication in JCA

    The hybrid inflation waterfall and the primordial curvature perturbation

    Full text link
    Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k=k∗k=k_*, and goes like k3k^3 for k≪k∗k\ll k_*, making it typically negligible on cosmological scales. The scale k∗k_* can be outside the horizon at the end of inflation, in which case \zeta=- (g^2 - \vev{g^2}) with gg gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass mm much bigger than the Hubble parameter HH, but is likely to be violated if m\lsim H. Coming to the contribution to ζ\zeta from the rest of the waterfall, we are led to consider the use of the `end-of-inflation' formula, giving the contribution to ζ\zeta generated during a sufficiently sharp transition from nearly-exponential inflation to non-inflation, and we state for the first time the criterion for the transition to be sufficiently sharp. Our formulas are applied to supersymmetric GUT inflation and to supernatural/running-mass inflationComment: very minor change
    • …
    corecore