45 research outputs found

    Rare SCARB1 mutations associate with high-density lipoprotein cholesterol but not with coronary artery disease

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesAIMS: Scavenger receptor Class B Type 1 (SR-BI) is a major receptor for high-density lipoprotein (HDL) that promotes hepatic uptake of cholesterol from HDL. A rare mutation p.P376L, in the gene encoding SR-BI, SCARB1, was recently reported to associate with elevated HDL cholesterol (HDL-C) and increased risk of coronary artery disease (CAD), suggesting that increased HDL-C caused by SR-BI impairment might be an independent marker of cardiovascular risk. We tested the hypothesis that alleles in or close to SCARB1 that associate with elevated levels of HDL-C also associate with increased risk of CAD in the relatively homogeneous population of Iceland. METHODS AND RESULTS: Using a large resource of whole-genome sequenced Icelanders, we identified thirteen SCARB1 coding mutations that we examined for association with HDL-C (n = 136 672). Three rare SCARB1 mutations, encoding p.G319V, p.V111M, and p.V32M (combined allelic frequency = 0.2%) associate with elevated levels of HDL-C (p.G319V: β = 11.1 mg/dL, P = 8.0 × 10-7; p.V111M: β = 8.3 mg/dL, P = 1.1 × 10-6; p.V32M: β = 10.2 mg/dL, P = 8.1 × 10-4). These mutations do not associate with CAD (36 886 cases/306 268 controls) (odds ratio = 0.90, 95% confidence interval 0.67-1.22, P = 0.49), despite effects on HDL-C comparable to that reported for p.P376L, both in terms of direction and magnitude. Furthermore, HDL-C raising alleles of three common SCARB1 non-coding variants, including one previously unreported (rs61941676-C: β = 1.25 mg/dL, P = 1.7 × 10-18), and of one low frequency coding variant (p.V135I) that independently associate with higher HDL-C, do not confer increased risk of CAD. CONCLUSION: Elevated HDL-C due to genetically compromised SR-BI function is not a marker of CAD risk.deCODE genetics/Amge

    Compound heterozygous mutations in UBA5 causing early-onset epileptic encephalopathy in two sisters.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesEpileptic encephalopathies are a group of childhood epilepsies that display high phenotypic and genetic heterogeneity. The recent, extensive use of next-generation sequencing has identified a large number of genes in epileptic encephalopathies, including UBA5 in which biallelic mutations were first described as pathogenic in 2016 (Colin E et al., Am J Hum Genet 99(3):695-703, 2016. Muona M et al., Am J Hum Genet 99(3):683-694, 2016). UBA5 encodes an activating enzyme for a post-translational modification mechanism known as ufmylation, and is the first gene from the ufmylation pathway that is linked to disease.We sequenced the genomes of two sisters with early-onset epileptic encephalopathy along with their unaffected parents in an attempt to find a genetic cause for their condition. The sisters, born in 2004 and 2006, presented with infantile spasms at six months of age, which later progressed to recurrent, treatment-resistant seizures. We detected a compound heterozygous genotype in UBA5 in the sisters, a genotype not seen elsewhere in an Icelandic reference set of 30,067 individuals nor in public databases. One of the mutations, c.684G > A, is a paternally inherited exonic splicing mutation, occuring at the last nucleotide of exon 7 of UBA5. The mutation is predicted to disrupt the splice site, resulting in loss-of-function of one allele of UBA5. The second mutation is a maternally inherited missense mutation, p.Ala371Thr, previously reported as pathogenic when in compound heterozygosity with a loss-of-function mutation in UBA5 and is believed to produce a hypomorphic allele. Supportive of this, we have identified three adult Icelanders homozygous for the p.Ala371Thr mutation who show no signs of neurological disease.We describe compound heterozygous mutations in the UBA5 gene in two sisters with early-onset epileptic encephalopathy. To our knowledge, this is the first description of mutations in UBA5 since the initial discovery that pathogenic biallelic variants in the gene cause early-onset epileptic encephalopathy. We further provide confirmatory evidence that p.Ala371Thr is a hypomorphic mutation, by presenting three adult homozygotes who show no signs of neurological disease

    COPA syndrome in an Icelandic family caused by a recurrent missense mutation in COPA

    Get PDF
    Background: Rare missense mutations in the gene encoding coatomer subunit alpha (COPA) have recently been shown to cause autoimmune interstitial lung, joint and kidney disease, also known as COPA syndrome, under a dominant mode of inheritance. Case presentation: Here we describe an Icelandic family with three affected individuals over two generations with a rare clinical presentation of lung and joint disease and a histological diagnosis of follicular bronchiolitis. We performed whole-genome sequencing (WGS) of the three affected as well as three unaffected members of the family, and searched for rare genotypes associated with disease using 30,067 sequenced Icelanders as a reference population. We assessed all coding and splicing variants, prioritizing variants in genes known to cause interstitial lung disease. We detected a heterozygous missense mutation, p.Glu241Lys, in the COPA gene, private to the affected family members. The mutation occurred de novo in the paternal germline of the index case and was absent from 30,067 Icelandic genomes and 141,353 individuals from the genome Aggregation Database (gnomAD). The mutation occurs within the conserved and functionally important WD40 domain of the COPA protein. Conclusions: This is the second report of the p.Glu241Lys mutation in COPA, indicating the recurrent nature of the mutation. The mutation was reported to co-segregate with COPA syndrome in a large family from the USA with five affected members, and classified as pathogenic. The two separate occurrences of the p.Glu241Lys mutation in cases and its absence from a large number of sequenced genomes confirms its role in the pathogenesis of the COPA syndrome. Keywords: COPA syndrome, Lung disease, Arthritis, Immune dysregulation, Case reportPeer Reviewe

    Allele frequency of variants reported to cause adenine phosphoribosyltransferase deficiency.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadAdenine phosphoribosyltransferase deficiency is a rare, autosomal recessive disorder of purine metabolism that causes nephrolithiasis and progressive chronic kidney disease. The small number of reported cases indicates an extremely low prevalence, although it has been suggested that missed diagnoses may play a role. We assessed the prevalence of APRT deficiency based on the frequency of causally-related APRT sequence variants in a diverse set of large genomic databases. A thorough search was carried out for all APRT variants that have been confirmed as pathogenic under recessive mode of inheritance, and the frequency of the identified variants examined in six population genomic databases: the deCODE genetics database, the UK Biobank, the 100,000 Genomes Project, the Genome Aggregation Database, the Human Genetic Variation Database and the Korean Variant Archive. The estimated frequency of homozygous genotypes was calculated using the Hardy-Weinberg equation. Sixty-two pathogenic APRT variants were identified, including six novel variants. Most common were the missense variants c.407T>C (p.(Met136Thr)) in Japan and c.194A>T (p.(Asp65Val)) in Iceland, as well as the splice-site variant c.400 + 2dup (p.(Ala108Glufs*3)) in the European population. Twenty-nine variants were detected in at least one of the six genomic databases. The highest cumulative minor allele frequency (cMAF) of pathogenic variants outside of Japan and Iceland was observed in the Irish population (0.2%), though no APRT deficiency cases have been reported in Ireland. The large number of cases in Japan and Iceland is consistent with a founder effect in these populations. There is no evidence for widespread underdiagnosis based on the current analysis.Rare Kidney Stone Consortium, a part of the National Center for Advancing Translational Sciences (NCATS) Rare Diseases Clinical Research Network (RDCRN) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Center for Advancing Translational Sciences (NCATS) United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK) Landspitali University Hospital Research Fun

    Sequence variant at 4q25 near PITX2 associates with appendicitis.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesAppendicitis is one of the most common conditions requiring acute surgery and can pose a threat to the lives of affected individuals. We performed a genome-wide association study of appendicitis in 7,276 Icelandic and 1,139 Dutch cases and large groups of controls. In a combined analysis of the Icelandic and Dutch data, we detected a single signal represented by an intergenic variant rs2129979 [G] close to the gene PITX2 associating with increased risk of appendicitis (OR = 1.15, P = 1.8 × 10(-11)). We only observe the association in patients diagnosed in adulthood. The marker is close to, but distinct from, a set of markers reported to associate with atrial fibrillation, which have been linked to PITX2. PITX2 has been implicated in determination of right-left symmetry during development. Anomalies in organ arrangement have been linked to increased prevalence of gastrointestinal and intra-abdominal complications, which may explain the effect of rs2129979 on appendicitis risk

    The sequences of 150,119 genomes in the UK Biobank

    Get PDF
    Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data(1,2). Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank(3). This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation

    A population-based survey of FBN1 variants in Iceland reveals underdiagnosis of Marfan syndrome

    Get PDF
    Publisher Copyright: © 2023, The Author(s).Marfan syndrome (MFS) is an autosomal dominant condition characterized by aortic aneurysm, skeletal abnormalities, and lens dislocation, and is caused by variants in the FBN1 gene. To explore causes of MFS and the prevalence of the disease in Iceland we collected information from all living individuals with a clinical diagnosis of MFS in Iceland (n = 32) and performed whole-genome sequencing of those who did not have a confirmed genetic diagnosis (27/32). Moreover, to assess a potential underdiagnosis of MFS in Iceland we attempted a genotype-based approach to identify individuals with MFS. We interrogated deCODE genetics’ database of 35,712 whole-genome sequenced individuals to search for rare sequence variants in FBN1. Overall, we identified 15 pathogenic or likely pathogenic variants in FBN1 in 44 individuals, only 22 of whom were previously diagnosed with MFS. The most common of these variants, NM_000138.4:c.8038 C > T p.(Arg2680Cys), is present in a multi-generational pedigree, and was found to stem from a single forefather born around 1840. The p.(Arg2680Cys) variant associates with a form of MFS that seems to have an enrichment of abdominal aortic aneurysm, suggesting that this may be a particularly common feature of p.(Arg2680Cys)-associated MFS. Based on these combined genetic and clinical data, we show that MFS prevalence in Iceland could be as high as 1/6,600 in Iceland, compared to 1/10,000 based on clinical diagnosis alone, which indicates underdiagnosis of this actionable genetic disorder.Peer reviewe

    Genetic architecture of band neutrophil fraction in Iceland

    Get PDF
    Publisher Copyright: © 2022, The Author(s).The characteristic lobulated nuclear morphology of granulocytes is partially determined by composition of nuclear envelope proteins. Abnormal nuclear morphology is primarily observed as an increased number of hypolobulated immature neutrophils, called band cells, during infection or in rare envelopathies like Pelger-Huët anomaly. To search for sequence variants affecting nuclear morphology of granulocytes, we performed a genome-wide association study using band neutrophil fraction from 88,101 Icelanders. We describe 13 sequence variants affecting band neutrophil fraction at nine loci. Five of the variants are at the Lamin B receptor (LBR) locus, encoding an inner nuclear membrane protein. Mutations in LBR are linked to Pelger-Huët anomaly. In addition, we identify cosegregation of a rare stop-gain sequence variant in LBR and Pelger Huët anomaly in an Icelandic eight generation pedigree, initially reported in 1963. Two of the other loci include genes which, like LBR, play a role in the nuclear membrane function and integrity. These GWAS results highlight the role proteins of the inner nuclear membrane have as important for neutrophil nuclear morphology.Peer reviewe

    A truncating mutation in EPOR leads to hypo-responsiveness to erythropoietin with normal haemoglobin.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadThe cytokine erythropoietin (EPO), signalling through the EPO receptor (EPO-R), is essential for the formation of red blood cells. We performed a genome-wide association study (GWAS) testing 32.5 million sequence variants for association with serum EPO levels in a set of 4187 individuals. We detect an association between a rare and well imputed stop-gained variant rs370865377[A] (p.Gln82Ter) in EPOR, carried by 1 in 550 Icelanders, and increased serum EPO levels (MAF = 0.09%, Effect = 1.47 SD, P = 3.3 × 10-7). We validated these findings by measuring serum EPO levels in 34 additional pairs of carriers and matched controls and found carriers to have 3.23-fold higher EPO levels than controls (P = 1.7 × 10-6; Pcombined = 1.6 × 10-11). In contrast to previously reported EPOR mutations, p.Gln82Ter does not associate with haemoglobin levels (Effect = -0.045 SD, P = 0.32, N = 273,160), probably due to a compensatory EPO upregulation in response to EPO-R hypo-responsiveness
    corecore