7 research outputs found

    Administration Methods of Mesenchymal Stem Cells in the Treatment of Burn Wounds

    Get PDF
    Cellular therapies for burn wound healing, including the administration of mesenchymal stem or stromal cells (MSCs), have shown promising results. This review aims to provide an overview of the current administration methods in preclinical and clinical studies of bone-marrow-, adipose-tissue-, and umbilical-cord-derived MSCs for treating burn wounds. Relevant studies were identified through a literature search in PubMed and Embase and subjected to inclusion and exclusion criteria for eligibility. Additional relevant studies were identified through a manual search of reference lists. A total of sixty-nine studies were included in this review. Of the included studies, only five had clinical data from patients, one was a prospective case–control, three were case reports, and one was a case series. Administration methods used were local injection (41% in preclinical and 40% in clinical studies), cell-seeded scaffolds (35% and 20%), topical application (17% and 60%), and systemic injection (1% and 0%). There was great heterogeneity between the studies regarding experimental models, administration methods, and cell dosages. Local injection was the most common administration method in animal studies, while topical application was used in most clinical reports. The best delivery method of MSCs in burn wounds is yet to be identified. Although the potential of MSC treatment for burn wounds is promising, future research should focus on examining the effect and scalability of such therapy in clinical trials

    Amniotic fluid arginine from gestational weeks 13 to 15 is a predictor of birth weight, length, and head circumference

    No full text
    Arginine is a constituent of proteins and a precursor for polyamines and nitric oxide, and is essential for placentation, angiogenesis, and growth. Maternal plasma arginine concentrations are found to be lower in pregnancies complicated by fetal growth restriction, and arginine supplementation in later pregnancy is reported to increase birth weight. We measured arginine and the metabolites asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) in the amniotic fluid obtained in pregnancy weeks 13 to 15 from 363 pregnancies with a documented normal outcome and related the concentrations to birth weight, length, and head circumference. Arginine was higher in the amniotic fluid from female (mean 40.8 (SD 10.6) µmol/L) compared to male fetuses (37.4 (SD 11.2) µmol/L, p = 0.003). Despite the gender difference, arginine in the amniotic fluid from gestational weeks 13–15 was the strongest predictor for birth weight, length, and head circumference. ADMA was a strong predictor for birth weight and length, SDMA for birth weight, while Arg/ADMA and Arg/SDMA only predicted head circumference in multiple linear regression models. Due to increased arginine demands, pregnancy is considered a state of relative arginine deficiency. Our findings reflect the importance of a good maternal arginine status in early pregnancy, an observation that should be evaluated in an intervention study

    Amniotic fluid arginine from gestational weeks 13 to 15 is a predictor of birth weight, length, and head circumference

    Get PDF
    Arginine is a constituent of proteins and a precursor for polyamines and nitric oxide, and is essential for placentation, angiogenesis, and growth. Maternal plasma arginine concentrations are found to be lower in pregnancies complicated by fetal growth restriction, and arginine supplementation in later pregnancy is reported to increase birth weight. We measured arginine and the metabolites asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) in the amniotic fluid obtained in pregnancy weeks 13 to 15 from 363 pregnancies with a documented normal outcome and related the concentrations to birth weight, length, and head circumference. Arginine was higher in the amniotic fluid from female (mean 40.8 (SD 10.6) µmol/L) compared to male fetuses (37.4 (SD 11.2) µmol/L, p = 0.003). Despite the gender difference, arginine in the amniotic fluid from gestational weeks 13–15 was the strongest predictor for birth weight, length, and head circumference. ADMA was a strong predictor for birth weight and length, SDMA for birth weight, while Arg/ADMA and Arg/SDMA only predicted head circumference in multiple linear regression models. Due to increased arginine demands, pregnancy is considered a state of relative arginine deficiency. Our findings reflect the importance of a good maternal arginine status in early pregnancy, an observation that should be evaluated in an intervention study

    Amniotic Fluid Arginine from Gestational Weeks 13 to 15 Is a Predictor of Birth Weight, Length, and Head Circumference

    Get PDF
    Arginine is a constituent of proteins and a precursor for polyamines and nitric oxide, and is essential for placentation, angiogenesis, and growth. Maternal plasma arginine concentrations are found to be lower in pregnancies complicated by fetal growth restriction, and arginine supplementation in later pregnancy is reported to increase birth weight. We measured arginine and the metabolites asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) in the amniotic fluid obtained in pregnancy weeks 13 to 15 from 363 pregnancies with a documented normal outcome and related the concentrations to birth weight, length, and head circumference. Arginine was higher in the amniotic fluid from female (mean 40.8 (SD 10.6) µmol/L) compared to male fetuses (37.4 (SD 11.2) µmol/L, p = 0.003). Despite the gender difference, arginine in the amniotic fluid from gestational weeks 13–15 was the strongest predictor for birth weight, length, and head circumference. ADMA was a strong predictor for birth weight and length, SDMA for birth weight, while Arg/ADMA and Arg/SDMA only predicted head circumference in multiple linear regression models. Due to increased arginine demands, pregnancy is considered a state of relative arginine deficiency. Our findings reflect the importance of a good maternal arginine status in early pregnancy, an observation that should be evaluated in an intervention study

    The crossover design for migraine preventives: an analyses of four randomized placebo-controlled trials

    No full text
    Aims To evaluate the crossover design in migraine preventive treatment trials by assessing dropout rate, and potential period and carryover effect in four placebo-controlled randomized controlled trials (RCTs). Methods In order to increase statistical power, the study combined data from four different RCTs performed from 1998 to 2015 at St. Olavs Hospital, Norway. Among 264 randomized patients, 120 received placebo treatment before and 144 after active treatment. Results Only 26 (10%) dropped out during the follow-up period of 30–48 weeks, the majority (n = 19) in the first 12 weeks. No period effect was found, since the treatment sequence did not influence the responder rate after placebo treatment, being respectively for migraine 30.5% vs. 27.4% (p = 0.59) and for headache 25.0% vs. 24.8% (p = 0.97, Chi-square test) when placebo occurred early or late. Furthermore, no carryover effect was identified, since the treatment sequence did not influence the treatment effect (difference between placebo and active treatment). There was no significant difference between those who received active treatment first and those who received placebo first with respect to change in number of days per 4 week of headache (− 0.9 vs. -1.3, p = 0.46) and migraine (− 1.2 vs. -0.9, p = 0.35, Student’s t-test). Conclusions Summary data from four crossover trials evaluating preventive treatment in adult migraine showed that few dropped out after the first period. No period or carryover effect was found. RCT studies with crossover design can be recommended as an efficient and cost-saving way to evaluate potential new preventive medicines for migraine in adults

    Administration Methods of Mesenchymal Stem Cells in the Treatment of Burn Wounds

    No full text
    Cellular therapies for burn wound healing, including the administration of mesenchymal stem or stromal cells (MSCs), have shown promising results. This review aims to provide an overview of the current administration methods in preclinical and clinical studies of bone-marrow-, adipose-tissue-, and umbilical-cord-derived MSCs for treating burn wounds. Relevant studies were identified through a literature search in PubMed and Embase and subjected to inclusion and exclusion criteria for eligibility. Additional relevant studies were identified through a manual search of reference lists. A total of sixty-nine studies were included in this review. Of the included studies, only five had clinical data from patients, one was a prospective case–control, three were case reports, and one was a case series. Administration methods used were local injection (41% in preclinical and 40% in clinical studies), cell-seeded scaffolds (35% and 20%), topical application (17% and 60%), and systemic injection (1% and 0%). There was great heterogeneity between the studies regarding experimental models, administration methods, and cell dosages. Local injection was the most common administration method in animal studies, while topical application was used in most clinical reports. The best delivery method of MSCs in burn wounds is yet to be identified. Although the potential of MSC treatment for burn wounds is promising, future research should focus on examining the effect and scalability of such therapy in clinical trials
    corecore