38,386 research outputs found
Charge Transport Transitions and Scaling in Disordered Arrays of Metallic Dots
We examine the charge transport through disordered arrays of metallic dots
using numerical simulations. We find power law scaling in the current-voltage
curves for arrays containing no voids, while for void-filled arrays charge
bottlenecks form and a single scaling is absent, in agreement with recent
experiments. In the void-free case we also show that the scaling exponent
depends on the effective dimensionality of the system. For increasing applied
drives we find a transition from 2D disordered filamentary flow near threshold
to a 1D smectic flow which can be identified experimentally using
characteristics in the transport curves and conduction noise.Comment: 4 pages, 4 postscript figure
Phonon-induced quadrupolar ordering of the magnetic superconductor TmNiBC
We present synchrotron x-ray diffraction studies revealing that the lattice
of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q
increases and the amplitude of the displacements is drastically enhanced, by a
factor of 10 at 60 kOe, when a magnetic field is applied along [100]. The
distortion occurs at the same wave vector as the antiferromagnetic ordering
induced by the a-axis field. A model is presented that accounts for the
properties of the quadrupolar phase and explains the peculiar behavior of the
antiferromagnetic ordering previously observed in this compound.Comment: submitted to PR
Honeycomb lattice polygons and walks as a test of series analysis techniques
We have calculated long series expansions for self-avoiding walks and
polygons on the honeycomb lattice, including series for metric properties such
as mean-squared radius of gyration as well as series for moments of the
area-distribution for polygons. Analysis of the series yields accurate
estimates for the connective constant, critical exponents and amplitudes of
honeycomb self-avoiding walks and polygons. The results from the numerical
analysis agree to a high degree of accuracy with theoretical predictions for
these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference
"Counting Complexity: An international workshop on statistical mechanics and
combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda
Magnetic, thermal and transport properties of Cd doped CeIn
We have investigated the effect of Cd substitution on the archetypal heavy
fermion antiferromagnet CeIn via magnetic susceptibility, specific heat and
resistivity measurements. The suppression of the Neel temperature, T,
with Cd doping is more pronounced than with Sn. Nevertheless, a doping induced
quantum critical point does not appear to be achievable in this system. The
magnetic entropy at and the temperature of the maximum in resistivity are
also systematically suppressed with Cd, while the effective moment and the
Curie-Weiss temperature in the paramagnetic state are not affected. These
results suggest that Cd locally disrupts the AFM order on its neighboring Ce
moments, without affecting the valence of Ce. Moreover, the temperature
dependence of the specific heat below is not consistent with 3D magnons
in pure as well as in Cd-doped CeIn, a point that has been missed in
previous investigations of CeIn and that has bearing on the type of quantum
criticality in this system
Interdependence of magnetism and superconductivity in the borocarbide TmNi2B2C
We have discovered a new antiferromagnetic phase in TmNi2B2C by neutron
diffraction. The ordering vector is Q_A = (0.48,0,0) and the phase appears
above a critical in-plane magnetic field of 0.9 T. The field was applied in
order to test the assumption that the zero-field magnetic structure at Q_F =
(0.094,0.094,0) would change into a c-axis ferromagnet if superconductivity
were destroyed. We present theoretical calculations which show that two effects
are important: A suppression of the ferromagnetic component of the RKKY
exchange interaction in the superconducting phase, and a reduction of the
superconducting condensation energy due to the periodic modulation of the
moments at the wave vector Q_A
Phase-Locking of Vortex Lattices Interacting with Periodic Pinning
We examine Shapiro steps for vortex lattices interacting with periodic
pinning arrays driven by AC and DC currents. The vortex flow occurs by the
motion of the interstitial vortices through the periodic potential generated by
the vortices that remain pinned at the pinning sites. Shapiro steps are
observed for fields B_{\phi} < B < 2.25B_{\phi} with the most pronouced steps
occuring for fields where the interstitial vortex lattice has a high degree of
symmetry. The widths of the phase-locked current steps as a function of the
magnitude of the AC driving are found to follow a Bessel function in agreement
with theory.Comment: 5 pages 5 postscript figure
First-principles study of the energetics of charge and cation mixing in U_{1-x} Ce_x O_2
The formalism of electronic density-functional-theory, with Hubbard-U
corrections (DFT+U), is employed in a computational study of the energetics of
U_{1-x} Ce_x O_2 mixtures. The computational approach makes use of a procedure
which facilitates convergence of the calculations to multiple self-consistent
DFT+U solutions for a given cation arrangement, corresponding to different
charge states for the U and Ce ions in several prototypical cation
arrangements. Results indicate a significant dependence of the structural and
energetic properties on the nature of both charge and cation ordering. With the
effective Hubbard-U parameters that reproduce well the measured
oxidation-reduction energies for urania and ceria, we find that charge transfer
between U(IV) and Ce(IV) ions, leading to the formation of U(V) and Ce(III),
gives rise to an increase in the mixing energy in the range of 4-14 kJ/mol of
formula unit, depending on the nature of the cation ordering. The results
suggest that although charge transfer between uranium and cerium ions is
disfavored energetically, it is likely to be entropically stabilized at the
high temperatures relevant to the processing and service of urania-based solid
solutions.Comment: 8 pages, 6 figure
- …