2,393 research outputs found

    Weakly bound states of polar molecules in bilayers

    Full text link
    We investigate a system of two polarized molecules in a layered trap. The molecules reside in adjacent layers and interact purely via the dipole-dipole interaction. We determine the properties of the ground state of the system as a function of the dipole moment and polarization angle. A bound state is always present in the system and in the weak binding limit the bound state extends to a very large distance and shows universal behavior.Comment: Presented at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, 30 August - 3 September 201

    Risk analysis of a distillation unit

    Get PDF
    A risk analysis of a batch distillation unit is de-scribed. The analysis has been carried out at several stages during plant design, construction, and operation. The costs, quality, and benefits is using the methods are described

    Nuclear Structure Calculations with Coupled Cluster Methods from Quantum Chemistry

    Full text link
    We present several coupled-cluster calculations of ground and excited states of 4He and 16O employing methods from quantum chemistry. A comparison of coupled cluster results with the results of exact diagonalization of the hamiltonian in the same model space and other truncated shell-model calculations shows that the quantum chemistry inspired coupled cluster approximations provide an excellent description of ground and excited states of nuclei, with much less computational effort than traditional large-scale shell-model approaches. Unless truncations are made, for nuclei like 16O, full-fledged shell-model calculations with four or more major shells are not possible. However, these and even larger systems can be studied with the coupled cluster methods due to the polynomial rather than factorial scaling inherent in standard shell-model studies. This makes the coupled cluster approaches, developed in quantum chemistry, viable methods for describing weakly bound systems of interest for future nuclear facilities.Comment: 10 pages, Elsevier latex style, Invited contribution to INPC04 proceedings, to appear in Nuclear Physics

    Correlation between Risk Aversion and Wealth distribution

    Full text link
    Different models of capital exchange among economic agents have been proposed recently trying to explain the emergence of Pareto's wealth power law distribution. One important factor to be considered is the existence of risk aversion. In this paper we study a model where agents posses different levels of risk aversion, going from uniform to a random distribution. In all cases the risk aversion level for a given agent is constant during the simulation. While for a uniform and constant risk aversion the system self-organizes in a distribution that goes from an unfair ``one takes all'' distribution to a Gaussian one, a random risk aversion can produce distributions going from exponential to log-normal and power-law. Besides, interesting correlations between wealth and risk aversion are found.Comment: 8 pages, 7 figures, submitted to Physica A, Proceedings of the VIII LAWNP, Salvador, Brazil, 200

    Effect of FET geometry on charge ordering of transition metal oxides

    Full text link
    We examine the effect of an FET geometry on the charge ordering phase diagram of transition metal oxides using numerical simulations of a semiclassical model including long-range Coulomb fields, resulting in nanoscale pattern formation. We find that the phase diagram is unchanged for insulating layers thicker than approximately twice the magnetic correlation length. For very thin insulating layers, the onset of a charge clump phase is shifted to lower values of the strength of the magnetic dipolar interaction, and intermediate diagonal stripe and geometric phases can be suppressed. Our results indicate that, for sufficiently thick insulating layers, charge injection in an FET geometry can be used to experimentally probe the intrinsic charge ordering phases in these materials.Comment: 4 pages, 4 postscript figure

    Decoherence by a nonlinear environment: canonical vs. microcanonical case

    Get PDF
    We compare decoherence induced in a simple quantum system (qubit) for two different initial states of the environment: canonical (fixed temperature) and microcanonical (fixed energy), for the general case of a fully interacting oscillator environment. We find that even a relatively compact oscillator bath (with the effective number of degrees of freedom of order 10), initially in a microcanonical state, will typically cause decoherence almost indistinguishable from that by a macroscopic, thermal environment, except possibly at singularities of the environment's specific heat (critical points). In the latter case, the precise magnitude of the difference between the canonical and microcanonical results depends on the critical behavior of the dissipative coefficient, characterizing the interaction of the qubit with the environment.Comment: 18 pages, revtex, 2 figures; minor textual changes, corrected typo in eq. (53) (v2); textual changes, mostly in the introduction (v3

    Thermodynamics of Dipolar Chain Systems

    Full text link
    The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments.Comment: 15 pages, 5 figures, final versio

    Static Observers in Curved Spaces and Non-inertial Frames in Minkowski Spacetime

    Full text link
    Static observers in curved spacetimes may interpret their proper acceleration as the opposite of a local gravitational field (in the Newtonian sense). Based on this interpretation and motivated by the equivalence principle, we are led to investigate congruences of timelike curves in Minkowski spacetime whose acceleration field coincides with the acceleration field of static observers of curved spaces. The congruences give rise to non-inertial frames that are examined. Specifically we find, based on the locality principle, the embedding of simultaneity hypersurfaces adapted to the non-inertial frame in an explicit form for arbitrary acceleration fields. We also determine, from the Einstein equations, a covariant field equation that regulates the behavior of the proper acceleration of static observers in curved spacetimes. It corresponds to an exact relativistic version of the Newtonian gravitational field equation. In the specific case in which the level surfaces of the norm of the acceleration field of the static observers are maximally symmetric two-dimensional spaces, the energy-momentum tensor of the source is analyzed.Comment: 28 pages, 4 figures

    Bound Chains of Tilted Dipoles in Layered Systems

    Full text link
    Ultracold polar molecules in multilayered systems have been experimentally realized very recently. While experiments study these systems almost exclusively through their chemical reactivity, the outlook for creating and manipulating exotic few- and many-body physics in dipolar systems is fascinating. Here we concentrate on few-body states in a multilayered setup. We exploit the geometry of the interlayer potential to calculate the two- and three-body chains with one molecule in each layer. The focus is on dipoles that are aligned at some angle with respect to the layer planes by means of an external eletric field. The binding energy and the spatial structure of the bound states are studied in several different ways using analytical approaches. The results are compared to stochastic variational calculations and very good agreement is found. We conclude that approximations based on harmonic oscillator potentials are accurate even for tilted dipoles when the geometry of the potential landscape is taken into account.Comment: 10 pages, 6 figures. Submitted to Few-body Systems special issue on Critical Stability, revised versio
    corecore