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1.1 Introduction

This report gives an interim account of the risk analysis work
carried out during the design and construction of a methanol-
/organic product batch distillation unit. The report is made
immediately after commissioning of the unit and must therefore
be regarded as an interim report. The success or otherwise of
the risk analysis can only really be judged after several years
operation. Furthermore, there are some analyses which could not
be carried out prior to commissioning (for lack of information)
and also some comparison analyses outstanding. For these rea-

sons, we have called this a "Half Term Report".
The results presented here cover the plant to be analyzed, the

risk analysis methods used, experience of application of the
methods, and a provisonal evaluation of the results.

1.2 Objectives and organisation

The objectives of this analysis were threefold

- to provide a '"safe" design basis for a new organic pro-
duct/methanol batch distillation unit of circa 5.000 1.
capacity.

- To illustrate the use of risk analysis techniques and
demonstrate their application throughout the design and
construction of the plant.

-~ To investigate the effectiveness of various risk analy-
sis methods in an industrial context, and gather basis
information which would allow a cost/benefit optimi-

sation of risk analysis procedures.



In order to fulfill the last of these objectives it was nesces-
sary to use alternative methnds and variations of methods. The
analyses were also carried to a 1level of detail which would
perhaps not be justified in normal industrial routine. The pro-
cedures to be used were rigidly defined (see 1) in order that
the experiment should be well controlled.

The analyses were carried out as a close co-operation between
Grindsted Products A/S and Rise National Laboratory. Orla Han-
sen was the project engineer for the distillation unit during
the project having responsibility for overall design including
safety design. The writer was project 1leader for the risk
analysis, reporting in a consulting capacity to O. Hansen. C.
Jensen was (and is) the plant safety officer. 0. F. Jacobsen
and M. Justesen were responsible for specific aspects of the
risk analysis. S. Kjersgaard was leader of the plant develop-
ment department, and provided overall guidance during the risk

analysis project.

In practice, a good deal of the work took place in closely wor-
king committees or '"brainstorming groups'". As a result it is
difficult to say how the analysis work was apportioned, or "who

did what". The result must be regarded as a group effort.

1.2.2. Philosophy and Approach

(This section represents the views of the editor, which are not
nescessarily shared by other members of the project. The ideas
presented here provided the basis for selection of the risk
analysis methods used.)

The objective of risk analysis carried out during design is to
produce a plant which is as safe as 1is practically possible,
This may, in some instances, involve balancing the costs of
safety equipment against the probability of failure. But for
the most part, such questions are decided as a result of legal

and standards requirements, such that an optimum safety level



for fitting of safety equipment is already achieved. The role
of risk analysis then becomes one of finding risk sources, en-
suring that for each risk source appropriate safety measures
have been used and appropriate standards applied, and of fin-

ding errors in the design.

The approach taken has, then, been to use methods which give as
thorough as possible an identification of possible design
errors and sources of risk. The methods have been applied at as
early a stage of design as possible, and different methods

appropriate to each stage of the design have been applied.

Adopting this approach to risk analysis, a very important mea-
sure of success is that of completeness. Completeness can be
defined either as

"the proportion of potential risk sources

found by the analysis" (measure 1)
or

"the proportion of the actual risk,

measured as expected loss,

found by the analysis". (measure 2)

Calculating a measure of completeness directly to some extent
begs the question, since it requires that the potential risk be
known completely. There are several ways to get over this
problem. One is to develop methods which, within certain well
defined limits, perform a complete analysis. This can be done
for example for plant disturbances recorded in terms of varia-
tions 1in thermodynamic variables describing the state of the
plant. A complete analysis can then be built up automatically
(See 1). Another example is operator error modes. A complete
list of potential error modes can be built up, since the number
of possible operator interactions with the plant is limited.
Given a complete analysis derived by one method, completeness
of another method can be determined by comparing the two.

Another way of determining completeness is to compare the re-

sults of the analysis with a set of case stories from similar



plant, and to then see if, on the basis of the case stories,
the analysis can be extended.

A third way of checking completeness is to compare the results
of an analysis with the actual experience in operating the
plant.

All three approaches have been taken in this report.

Given a strong emphasis on completeness in identification of
risks, another important parameter is discrimination. This can

be defined as

"The proportion of identified potential risk
sources which subsequently proved to be actual
risk sources".

The problem here is that it may be fairly easy to identify a
large number of possible risk sources, if the only statement
made 1is 'this source of risk may be a threat'". Considerable
additional work may be required to confirm that '"this source of
risk is a threat'". Methods for risk analysis should not only be
complete, but should be reasonably discriminating.

The final aspect which is important when comparing risk analy-

sis procedures is cost. Cost here has been measured in terms of
engineer hours.

1.3.1. The distillation unit

The distillation unit itself consists of major parts

- a distillation kettle, heated by steam, and stirred (to

improve heat transfer)

- a storage vessel, capable of supplying a continuous

stream of feed to distillation unit



a short packed column allowing separation of vapour.

a condenser, with a proportioned reflux back to the

column.

- a further cooler ensuring temperature control of conden-
sed liquids.

- Four distillate receivers, for respectively methanol,

impure methanol, impure urethane, and pure urethane.

- A vacuum pumping system, allowing the later stages of
distillation to take place under vacuum. The vacuum sy-
stem includes a condenser cooled by brine, as a vapour

trap.
A sketch of the unit is shown in fig. 1.

The unit is controlled by a Texas Instruments PM 550, program-
med logic controller, which implements both sequential and con-
tinous control. The sequential control principle used is that
of a fixed sequence of control stages, with only 1limited
sequence variations, and with operator control of the timing of
the sequences. That 1is, the operator can signal the start of
the next step in a procedure, and can also stop a procedure.
Extensive safety interlocks are provided, preventing start bf a

procedure under unsafe conditions.

In use the distillation unit is first filled by pumping the
product methanol mixture to the distillation kettle from a
transportation tank. When the required 1level 1is reached,
further filling of the storage vessel takes place, until a full
charge of feed is contained.

Thereafter the distillation kettle is heated, and distillation
begins, with heating controlled to maintain an appropriate
pressure drop accross the distillation column. The distillation
removes relatively pure methanol, which is transferred to the

first distillate receiver.
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During the distillation, a flow of feed is maintained to the
kettle from the storage vessel whenever the level falls below a
desired point. The "pure methanol" distillation ceases when an
appropriate distillation temperature has been reached.

Once the required limit temperature for pure methanol distilla-
tion has been reached, vacuum distillation is started manually,
first of impure methanol, then of impure product finally of
pure product. Switching between the different fractions takes
place on the basis of temperature. The separate fractions are
collected in separate receivers. Control of the temperature set
point for the distillation 1is changed continuosly during
urethane distillation, to ensure optimal distillation condi-

tions.

On completion the various receivers can be emptied to transpor-
tation vessels. In the case of impure methanol, emptying is to
an existing ground tank. In the case of impure product, this
can be returned to the distillation kettle. (transfer by vacuum
pumping).

Residue from the distillation, in the form of a thick readily
freezing liquid, is emptied to drums after completion of the
distillation, and is transported away to be burnt.

The entire distillation unit is rinsed and boiled out, after

use, using water.

1.3.2. Boundaries for the analysis

The plant analysed is essentially that shown in fig. 1, exten-
ding from the intake coupling for distillate feed, through to
the couplings to transport containers and to the ground tank.
The analysis includes the vacuum pump. The analysis does not
include the ventilation dump tank ("incident tank"), nor the

transportation tanks.
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The phases of plant operation analysed are all steps of normal
production. Incidents occurring during repair or maintenance
were not analysed.

No attempt was made to check the construction strength of ves-
sels, supporting steelwork etc. during the risk analysis, since
such checks are a normal part of the plant design procedure,
and are already well standardised.

1.3.3. Safety Equipment fitted to the plant

and plant safety features.

Safety equipment fitted to the plant is listed here. The 1list
covers several items which are not normally considered under
the title safety equipment, but which have a definite safety
function. They are included in the list because of their impact
on the safety analysis. An example is the overflow pipe on the
distillation feed storage tank.

Some of the safety equipment was added to the plant as a result
of the analysis. Some was added as standard safety features,
following Grindsted Products normal design practice. Some of
the safety equipmént was added as a result of ad hoc checks
during commissioning, that is, despite the need being overlook-
ed during the initial safety analysis.

1) Pumps used are centrifugal pumps, with maximum delivery

pressure less than plant design pressure.

2) The feed storage tank has an overflow back to the
transportation tanker, to avoid overfilling.

3) "Cold trap" on all atmospheric vents, to prevent release

of methanol vapour.
4) Venting to atmosphere on the feed storage tank.

5) Atmosphere venting on all other vessels, via a three way



6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)
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valve, which also allows venting to the wvacuum pump.

Atmosphere venting via an "accident tank"

"Swan neck" (U trap) on the feed tank to prevent blow back

of methanol vapour.

Burst disk on the distillation kettle.

Double/triple activation required on the kettle drain val-

ve, of diverse types (electronic and air).

Manual emergency valve on the kettle drain line.

Self closing valves in the coupling nozzles for emptying

outlets for the methanol receivers.

Methanol wvapour return 1lines for coupling to transport

tanks.
A heavy 1lid and exhaust pump for vapour from the residue
drum to prevent escape of vapour when emptying the distil-

lation kettle of residue.

Weighing machine to control against overfilling residue
drums.

Extensive interlocking to prevent unsafe action and to

stop the plant in case of emergencies.

Safety showers.

Standard fire fighting equipment.

Bunds to prevent spread of liquids in case of release.

The use of a programmed logic controller for control of the

plant made 1interlock design particularly easy and economic.

Interlocks fitted include the following.



1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)
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Emptying the feedtank must first be activated locally and
then in the control room, ensuring that the operator has a
chance to check that a receiving container is fitted.

(Note that activation in the control rooom and then local-
ly could be dangerous in the case of a switch failure).

The feed tank cannot be emptied while the distillation
kettle is being filled. '

The methanol receiver cannot be emptied if its level is

already too low, or if the ground tank level is too high.
Item deleted.

Interlocks similar to 3 and 4 on the impure methanol
receiver, and urethane reveivers.

The impure urethane receivers may not be emptied to the
distillation kettle while the distillation or rinsing is
being undertaken.

Interlocks similar to 1 on the impure urethane and pure

urethane receivers.

Triple closure switches on the distillation kettle char-
ging valve, to prevent overfilling.

Kettle charging cannot take place while the feed tank is
being filled, or emptied, or while a vacuum distillation
step is taking place.

Atmospheric distillation cannot be activated while the

plant is activated for vacuum distillation.

Atmospheric distillation cannot be started, and stops, if
the high 1level alarm or the high temperature alarm is
received, or if the receiver is not empty. (This interlock

was later removed)
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12) Vacuum distillation cannot begin if the distillation appa-
ratus is overfull, or if the receivers are not empty.

(This interlock was later removed).

13) The agitator is stopped if the temperature falls unders
50°C during urethane distillation.

14) Different distillation receivers may only be open one at a
time, and distillation may not be activated during tank

draining or rinsing.

15) Different trip temperatures for each of the distillation
steps.

16) Prevention of emptying of the distillation kettle unless
there is a receiving drum with less than 100 kg in it, or
if the temperature is too high.

17) Rinsing of the distillation kettle can only take place if
the other processes are inactive.

A lamp light behind the activating switch if and only if the
corresponding operating step can be activated. Any operating
step can be stopped by pressing the activating button once

more.

1.4 Potential risks for the plant

The primary risks for the distillation unit is release of
methanol or methanol-product mixtures. The risk is enhanced if
the methanol is hot (at its boiling point)., Methanol vapour is
poisonous, but a much larger threat is ignition, which could
cause af deflagration type explosion (more probably just a
puff) and a fire.
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Fighting methanol fires presents a problem in that ordinary
foam is destroyed by the liquid. On the other hand dilution
with water rapidly renders the methanol non-inflammable.

The product is itself non-poisonous, but contains, before di-
stillation, in the present plant, dimethyl carbonate which is
poisonous.

An additional potential risk in the plant is overpressuring,

which could lead to a vessel rupture explosion.

The major threat from the plant is that of capital and produc-
tion loss in the case of fire. Additionaly neibouring produc-
tion units could be damaged. There is a possibility of harm to
the operator of the plant, if a release of methanol, and
subsequent fire, should occur while he was in the neighbourhood
of the plant. The most probable circumstances for this is du-
ring movement of residue drums. Note that during filling of the
drums, when the operator is immediately beneath the distil-
lation unit, the distisllation unit itself is empty of metha-
nol,

There is a risk that the operator could be splashed with re-
sidue, though extensive measures have been taken to prevent
this. In particular, a heavy 1lid must be lowered over the drum

before residue is emptied to it.

1.5.1. Safety constraints on the design (laws, standards, etc.)

The major safety constraints imposed on the design are from
Grindsted Products A/S normal construction practice, which in-
cludes standards for arrangement of distillation units, steel-~

work, piping, etc.

1.5.2. Acceptance criteria

The main acceptance criterion adopted for the analysis was that



- 17 -

no single failure of equipment, and no single operating error,
should result in release of liquids, overpressuring or similar

extreme event.
The single failure criterion was extended to a double failure

criterion, in some cases where failure probabilities were jud-
ged especially high.

2.1. Organisation of the analyses

Safety analysis as part of the plant design process

The safety analysis was carried out as part of the design pro-
cess. What this meant in practice was that hazard and oper-
ability analyses were carried out at the flow sheet stage and
at the piping and instrumentation diagram stage of the design.
There was a qualitative analysis of possible procedural erros
at the stage of initial procedure formulation. And prior to
commissioning, checks were applied according to an outline
check list of "safety officer checks'".

The analysis was carried out by a team consisting of the plant
design engineer in charge of the project, the plant safety
officer and two risk analysts. With this composition of the
team, a direct feedback of results was possible at each stage
of the analysis. The benefit of the analysis was therefore an
early recognition and correction of design problem and in some
cases, recognition of problems which would otherwise have been
overlooked.

The initial analysis was for a version of the plant including
reactors and ammonia treatment. This plant was never in fact
built, but hazards identified for this plant were relevant for
the actual plant. In all about six days of analysis effort for
a three man team, and an additional 10 man days of individual
effort were expended for this original plant design, during
1979.
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Fig, 2 Typical Action Sheets as completed during safety analysis
meetings.
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The actual plant was analysed according to the following calen-
der.

Jan 7 Initial planning meeting

Feb 22 first plant design analysis (Hazop)
April 27 Hazop analysis

May 27 Completion of Hazop Analysis

May 29 ff Action error analysis of the plant

Nov Begin commissioning/Safety Officer chec-
ks

The time taken was, in meetings, for Hazop analysis 2 days x 6
hrs. x 3 persons. For action error analysis, the analysis took
2 days x 6 hrs x 2 persons. The safety checks took 2 days for 2
persons.

Additionally, some 10 days were spent in evaluating problems
outside safety analysis meetings.

A feature of the organisation of the analysis was that work was
carried out by a team, as described above. For each meeting, a
secretary was chosen, with the Jjob of ensuring that a rigid
analysis procedure was followed, and with the job of recording
the results of the analysis. Any problems which arose during
the analysis were discussed for a few minutes. If the problem
proved too difficult, or 1if insufficient information were
available, solution of the problem was postponed. A particular
person was appointed to solve the problem, and this respon-
sibility recorded. The problem was written down on an "action

sheet". Some typical action sheets are shown in fig. 2.

Further analyses have been carried out for comparison purposes,
but these have not yet reached a stage where reporting is ap-

propriate.

An important aspect of the analysis was the need for repeti-

tion, at several stages, as the design altered.
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4, Information basis for the analysis

The information on which the risk analysis was based consisted
of

- Plant flow sheet and piping and instrumentation diagrams
through all stages of design revision.

- The plant production/operating instructions which de-

scribe
- The operators safety responsibilities (standard
responsibilities for handling methanol, supervisory
responsibilities for 1leaks and abnormalities in
performance)
- Plant control programming tables (see fig. 2.5)

- Plant layout drawings

- Description of the PLC controller for the plant.

5. Analysis

5.1.1. Initial analyses

At the outset of the project a survey of litterature was car-
ried out to determine the properties of substances used in the
plant, and their potential reactions. A reaction matrix was
built up (see fig. 3).

Experimental tests were performed on the reaction involved in
producing the urethane, as a result of queries raised in the

analysis. One result of this was the realisation that under
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Fig, 2.5. Control Programming Tables.
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failure conditions, pressure could be higher than originally
thought (in the case of temperature control failure and burst
disc failure to operate or blowdown 1line blockage). As a
result, an additional pressure guage was added as part of the
plant instrumentation.

The 1initial analyses took in all about 2 man days, apart from

the time required for the reaction experiment.

5.1.2.1. Hazard and Operability analysis

METHOD

The method chosen for the first step of the risk anlysis was
the hazard and operability method first developed by ICI Ltd.
The method can be used in many versions. The version used for
this plant was one based on systematic analysis of disturbances

for each "volume' in the process plant.

The reason for the choice of this method was that, at least for
steady state operation, of the plant, it provides a fairly
complete analysis of hazards, and can be performed quite quick-
ly.

In detail, the method involves the following stages.

1) A flow sheet on piping and instrumentation diagram for
the plant is obtained.

2) Each '"volume'" on the diagram is numbered.

A "volume" may be a tank or pressure vessel. It may
equally be a pump, a section of pipe which can be clo-
sed off, a stand pipe, a drain pit, etc. A general de-
finition would be "any volume 1in space which can be
closed off from other volumes and in which mass or

energy can accummulate.
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3) For each '"volume" a series of disturbances are pro-
posed. These disturbances are drawn from the 1list

BREACH OF VESSEL BOUNDARY

TEMPERATURE

PRESSURE

LEVEL TO HIGH
CONCENTRATION } TOO LOW
DEGREE OF MIXING ZERO
pH

REDOX

4) For each disturbance, potential causes and potential
consequences are described and written down in a table.

5) For any problems discovered either the solution is en-
tered into the table, or an action is placed on one
person to solve the problem at a later date.

6) If necessary, because of the degree of complication in
a piping system, individual pipes may be subject to the
disturbance cause - conseqQuence - cure examination.

Here the list of disturbances to the following.

MASS FLOW TOO HIGH NO FLOW
HEAT FLOW TOO LOW REVERSE FLOW
CONCENTRATION TOO HIGH TOO LOW

WRONG SUBSTANCE
HIGH PRESSURE

7) The procedure is repeated for each vessel, and, if nes-

cessary, each pipe, turn.

For the analysis of the first plant, pre-printed tables contai-
ning the check lists given above were used (fig. 4). For the
second analysis, of the distillation unit, new tables were u-

sed, with the most common causes of disturbances, and the most
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Fig. 4. An example of the first version of the hazard and
operability analysis tables - as completed in

Hazop meetings.
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Fig. 5. Hazop table examples for the second analysis.
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common "cures'" already printed. The list of causes and cures
was obtained by examining the earlier tables. The intention was
to increase the rate at which analyses could be performed
(instead of writing, a cross could be set at the side of the
appropriate cause, or a number for the relevant pipe, valve
instrument (fig 5). Additionally it was hoped that the list of
causes would improve the coverage or completeness of the
analyses. Note that a space is left in the tables for "other

causes'",
The version of Hazards and Operability analysis wused here
should in principle provide a complete analysis of all plant

disturbances. 1If it does not, then this may be because

- not all operating states have been considered (it is

usual to concentrate on the normal operating state)

- Listing of causes is too complex (a fault tree or simi-
lar method should be used)

- Listing of consequences is too complex.
Comparison of different analyses later in this report enable

omissions to be investigated.

5.1.2.2. Observations on the hazard Operability analysis
process

The hazard and operability analysis was carried out within a
"brain storming" group. Discussions in such a group tend to
become long and detailed. It is nescessary for the meeting sec-
retary to excercise a good degree of discipline if the time

used is not to become excessive.

Recording of causes and consequences in the meeting can be dif-
ficult, because of the rate of discussion. As a result, the
writing tends to be terse. It is important that a fair copy is

written out later, if the results are required as plant docu-
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mentation. (The primary result, though, can be regarded as the
modifications added to diagrams, and the "actions" imposed on

group members).

As the analysis progresses, there is a tendency for a distur-
bance which was originally studied as a ''consequence'" to reap-
pear as a '"cause", This is natural, because, for example a
pressure disturbance can be transmitted from volume to volume.
Time can be saved by cross referencing from table to table, but

at each new volume, consequences should be considered.

5.1.2.3. Results of the hazard and operability analysis

Urethane reactor

The first analysis, on the product reactor, took in all three
days, with about five hours working time each day. The team
consisted of three persons. The work outside the meeting ('"ac-
tions") required in all about four man-days.

The number of "volumes" in the plant was 34, giving an analysis

time of about lhr. per volume, or 1% man hours per volume.

The number of modifications to the plant depends, of course, on
how good the plant design is before the analysis takes place.
Since the analysis took place when Jjust the flow sheet, and
later, when Jjust an initial P & I D were completed, the scope
for plant design improvement was in the present case relatively

wide.

In all 14 modifications were made to the plant drawings on the
“basis of the hazard and operability analysis. Of these, perhaps
half would have been made anyway during later design steps.
(They would though have required some design review work, and
may have required modification to already constructed equip-

ment).
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Detailed analysis of benefit is not possible, since the plant

was not built as originally designed.

Modifications resulting from analysis of the product reactor.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

One disturbance added to the alarm and evacuation plan
Modification of original flow sheet so that one reserve
tank was replaced by two, in order to avoid the possibili-

ty of overfilling the reactor.

Replacement of a 3-way valve which could lead to blockage

of a pipeway.
Addition of a pressure monitor on the reactor.

Design revision of the reactor charging 1id arrangement,

to allow interlocking.
Non return valves added to reactor feed lines.
Temperature alarm on safety valve outlet.
Addition of a temperature alarm on brine cooler.
Recess flanges specified for column.
Temperature and pressure trips added to reactor
Procedure points noted

- emptying procedure

~ shutdown procedure in cold weather

Valves added to periodic test list.

Changes in ammonia pipework arrangement.
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5.1.2.4 Results of the hazop analysis/methanol distillation

The analysis of the distillation plant (the plant subsequently
built) took one day (with four man team including one novice).
The day involved about five working hours. Work outside the

meeting took about two man days.

The number of volumes in the plant was 7, giving an analysis
time of about 1 hr. per volume in meetings, and a total
analysis time including follow-up work of about 3 man hours per

volume.

The number of modifications to the plant was in all 12. This
gives an average of about 3-4 hrs. per modification. About half
of the modifications would have been found anyway during later
design steps, but would almost certainly have involved changes
in construction or in ordering of components. One change resul-
ted in a direct saving of equipment (ca. kr. 10.000 life cycle
cost).

If the modifications were to have been required during commis-
sioning, then there could have been perhaps a two to three day
delay in plant start up. A capitalized value of such a delay is
circa kr. 20.000, which puts a value on each man hour used of

circa kr. 500 evaluated on this most conservative basis.

5.1.2.5. Modifications resulting from analysis of the distil-

lation plant.

1) Safety wvalve Dblowdown 1lines enter into the top of the
safety wvalve header, to prevent accumulation of 1liqguid
behind the safety valves (drain holes are also bored, as a

standard practice).

2) Heat tracing added to one valve to prevent blockage
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3) U-bend liquid trap added to prevent blowback of methanol
vapour to feed tank.

4) Bayonet valve added to feed line to prevent blowback of

vapour and resultant fire possibility.
5) Superfluous valve removed from drawing.
6) Temperature élarm added at top of condenser.
7) Pressure high trip added to distillation kettle
8) Brine traps added on methanol tanks.

9) Splash trap moved to before sight glass, rather than
after.

10) Temperature alarm on brine trap.
11) Level alarms and switches on receivers.
12) Interlock required on shift between receivers.

Many of the modifications would have been uneconomic if delayed
until the plant were built. An example of this is the inter-
change of a sight glass and splash trap in a condenser outlet.
This may reduce the risk of a possible sight glass brekage, due
to liquid or vapour hammer. The actual degree of risk is very
uncertain probably none at all. But the cost of the change was
less than a minutes effort with eraser and pencil. The change
brought the design into agreement with GP's standard practices,

5.1.2.6. Comparision of the two hazard analyses

The main differences between the two analysis situations, for
the reactor and the distillator were



- the potential risk is much higher for the reactor.

- the distillator analysis could already benefit from ana-

lysis of similar equipment on the reactor.

- the analysis tables used for the distillator included

check lists for "causes'" and 'cures".

One might expect, with the use of preprinted lists of causes,
that the analysis would go more quickly. In fact this was not

the case, the distillator analysis took longer per volume.

One explanation of this could be that the second analysis has
fewer "volumes". It is generally observed that later volumes in
a plant are analysed more quickly. This is due to the fact that
many problems repeat themselves, need not be solved twice. The

longer a chain of vessels, the quicker the analysis per vessel.

Another explanation of the additional time taken to analyse the
distillator could be that the analysis was more thorough. This

could be a result of using a cause check list,

That the distillator cause analysis was more thorough is cer-
tainly true. For the volumes on the two plants which correspond
to each other (distillation kettle, column, condenser, and two
receivers) the following numbers of potential disturbances and

problems were recorded.

For the reactor analysis 9 potential disturbances of the

distillation unit were recorded, resulting in 2 modifications.

For the distillation analysis - 19 disturbances recorded, re-

sulting in 12 modifications.

The cause check list seems to be a really worth while improve-
ment in the hazard and operability method. Observation during
the analysis indicated that it served as a stimulus to fantasy
espescially towards the end of a 1long analysis series, when

fantasy and patience are at at low ebb.
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The comparison also suggests that what takes most time in an
analysis is not the analysis itself, but the problems which

arise and the modifications made.

5.1.2.7. Comparison with operating experience

This is discussed later, when experience from commissioning is

described.

5.1.2.8. Action error analysis of the distillator operating

procedure.

Me thod

The method chosen for analysis of operating procedures was ac-

tion error analysis. This method involves.

1) listing each step in the operating procedure.

2) Describing the plant response for each step in the
operating procedure. For this the technique of con-

sequence analysis was used.

3) For each action, describing a range of possible error
modes, and plant responses to these errors.

Actions and plant events are described using cause consequence
diagram notation.

The error modes considered constitute a logically complete

list, as follows

ACTION TOO EARLY
ACTION TOO LATE
ACTION OMITTED



- 52 —

ACTION TOO MUCH

ACTION TOO LITTLE

ACTION TOO LONG

ACTION TOO SHORT

ACTION IN WRONG DIRECTION
ACTION ON WRONG OBJECT
WRONG ACTION

For recording the plant consequences, the following consequence
analysis procedure was used

1) Immediate consequence o0f the action on the directly

affected component were described and recorded.

2) Effects of the changes in the first component on tho-
se components directly connected to it were descri-
bed, taking account of alternative consequences which

could occur because of different component states.

3) Step two is repeated tracing effects from component
to component along pipes and cables, taking account
of alternative components states at each stage

When using this technique, it is important to remember the full
range of effects which a disturbance can cause. In particular
if it is important to remember the effects which can arise as a
result of flow reversal, and to remember that pressure effects
can travel upstream, against the normal flow of a liquid. Fi-
res, vibration, pipe whip, and escaping Jjets of 1liquid can
transfer effects via routes which are not shown on flow sheets

or piping diagrams.

Applying the action error procedure can be both time consuming
and expensive. To reduce the effort involves, pre-printed ac-
tion error analysis sheets were used. One sheet is used for
each action in the normal operating procedure, and extension
sheets are provided for those actions or errors with especially

complex consequences.
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Fig. 6. Examples of Action Error Sheets.
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The sheets also provide space for alternative event sequences
arising from unusual states or failure states in the plant
hardware.

An important aspect in fixing probabilities of accidents ari-
sing from operator errors is whether the plant guides or 'cues"
the operator to perform the correct action, and whether there
is a possibility for observing and correcting the results of an
error. Although the sheets are intended primarily for finding
possibilities rather than probabilities of error, cueing and

correction aspects are included on the analysis sheets.

5.1.3.2. Observations during the analysis

The number of operator errors possible for this plant are quite
limited, because of the extensive use of interlocks. No attempt
was made to analyse double failures (interlock failure plus
error) except in those cases which would lead directly to a

dangerous state.

The parts of the consequence sheets treating hardware failures
proved very valuable. The main emphasis of the analysis turned

out in practice to deal with these.

Some interesting new principle could be observed in the analy-

sis.

1) The list of "abnormal plant states' entered into the
diagram could in principle be endless., But it is suf-
ficient to limit the list to

a) Abnormal states within the physical boundary nor-
mally affected by the action.

b) Faults in equipment normally activated by the ac-

tion.
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¢) Faults which change the boundary of the part of
the plant normally affected. (eg. erroneously open

valves on the boundary).

2) It is easier to derive the ultimate consequences of
an error by following the erroneous event chain to
its conclusion, than it is to remember a potenfially
hazardous state and take it up again for examination
later, at the point in the procedure where danger

becomes actual.

5.1.3.3. Results of the analysis

The analysis took three days, for a three man team. Since 15
operational steps were involved, that means that on average one
hour (three man hours) were used per operation step.

In all 23 plant modifications were made on the basis of the
analysis. This seems to indicate that in spite of the large
amount of time used, the results made the analysis worthwhile.
The changes are shown in Section 5.1.3.4. On the same basis as
the calculation for the hazard and operability analysis, the
capitalized value of the changes should be a minimum of about
kr. 30.000.

Because of interlocks only three errors appeared initially dan-
gerous, and when further interlocks were added, even these were
irrelevant. An exception is an action which was overlooked in
the analysis (see later) because '"recovery actions'" were not

analysed.

5.1.3.4. Changes in the plant as a result of the action/

error analysis.

1) Bayonet valves on charging and discharging hoses.

2) Change in sequence of interlock at discharge stations. -



3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)
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the sequence now 1is - couple hoses, depress interlock

button locally, depress ectivation button in control room.
Vacuum breaker on ground tank.

Flame arrester on ground tank.

Deleted

V636 removed.

Consequences of overflow in feed tank reduced.

Change from a positive displacement to centrifugal pump.
Temperature measurement re-sited.

Extra check of level measurement in the procedure.

New time delayed interlock on step 9.

LSAH 603 alarm replaced by trip

New instructions to prevent overfilling with methanol.
Deleted

Check valve on pump.

V647 fail open to atmosphere.

Change of 1layout for distillate distribution valves to

preserve purity.
Interlock to prevent emptying 008,009 during distillatiocon.
On alarm TSAH 616, V612 doses, V619 opens, and pump stops.

Position feedback from V636.
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21) Regulation during boiling out for cleaning.

22) V 644, V 645 are in "warm" position except during distil-

lation.

23) Weight interlock on drum filling.

5.1.3.5.

Comparison of the action error analysis with the ha-

hazard and operability analysis.

Since the hazard and operability analysis is in principle a

complete analysis of disturbances, one might reasonably ask why

the action error analysis revealed new problems. An examination

of the new problems found reveals the reason.

1)

2)

Need for bayonet valves.

Breach of retaining boundary was not treated directly
for all vessels in the hazard and operability ana-
lysis because operating procedures were unavailable
at the Hazop stage. Otherwise, the possibility of a
single operation error opening valves would presum-
ably have been found.

V 622 remaining stuck open

In the hazard analysis the possibility of V622 being
opened was not really considered at all - again
procedures were not available, and hence the problem
of not closing did not arise. If breach of boundary
had been considered, then presumably only '"fails
open" would have been considered. '"Valve remains open
from previous step" was added as an entry in the
check list.



3)

4)

5)

6)

7)

8)
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Vacuum breaker on the ground tank

The action error analysis was simply more thorough,
since it traced consequences beyond the boundaries
specified for the analysis.

Check that plant activities stop at the end of a pro-
cedure step. (This check was recommended but proved
difficult to implement).

This is naturally related to procedural problems.

0f two valves 636, 605, one superfluous

Only when it came to checking the operation of the
plant was the purpose of these two questioned.

Sequence change on interlock

Clearly a prcedural problem.

Placement of temperature measurement

This concerns correctness of measurement during a
state change - a procedural problem. The measurement
would probably work well on a continously operating

plant.

Temperature trip bypasses the PLC
(This recommendation was not eventually adopted)

This is again a procedural problem - an action is
required to be reliable at a particular stage of a
procedure, but is irrelevant at other stages.

The general gist of these examples is that the "normal state"

for a batch processing plant can be any one of a number of sta-

tes. What these are becomes obvious when procedures are exami-
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ned in detail. The hazard and operability analysis could for
example examine why temperature was too high during a parti-
cular stage, and find that a trip had not occurred. But the
effect would be something like making an action error analysis
backwards. The first step would have to be to make a procedural

analysis forwards, in order to discover what was '"normal'.

An important point is that purpose of control devices and in-
struments is largely overlooked in the hazard and operability
analysis as performed here, whereas purpose is a clear aspect
of the action error analysis. A major conclusion is that pur-
pose of each volume, each control device, and each operation
step should be documented.

5.1.4. Error cause analysis

More for illustrative purposes than for any other reason, a
cause analyses of the error

"operator presses drum filling interlock buttom
at the wrong time'".

was carried out.

The method was to use a check list in diagram form, based on an
error data calssification by Rasmussen (2). Three cases are
examined.

- Button is pushed while there is no residue drum present.

- Button is pushed while the resiue drum has already 100
kg of residue in it.

- Button is pushed while the residue is scrumming.

For illustrative purposes, weighing machine interlocks are

assumed to have failed. The results are shown in fig. 7.
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Fig. 7. Excerpt from the Error Cause Analysis.
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Fig. 8. Significant excerpts from the hazard tree analysis.
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5.1.5. Hazard tree analysis

As a cross check on the other analyses, a hazard tree analysis
of the plant was carried out. The purpose of such an analysis
is to try to discover if there is some obscure failure or acci-
dent phenomenon in the plant which has been overlooked by the

more standard analyses.

The method makes use o0f an extensive check list of accident
phenomena, structured in the form of a fault tree. The list has
been built up through examination of failure mechanism in some

2.000 accident case stories (see 1).

In use, relevant parts of the check list are marked with red
ink. Because the 1list is structured, it is not generally neces-
sary to examine and consider all failure possibilities -
irrelevant parts can generally be discarded as the highest

level of the hazard tree structure is considered.
The analysis took about 20 minutes, for a three man team. It

revealed one potential hazard which had been overlooked and

resulted in one modification to procedures.

5.1.6. Observations and analysis

prior to and during commissioning

The plant was commissioned during November 1980. The commissio-
ning itself took four days, with a precommissioning check out

over a period of one week.

It is impossible to observe all possible failure problems by an
analysis of drawings alone. Apart from any other reason, not
all plant details appear on drawings. For this reason a further

check of the plant was carried out during commissioning.
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An attempt was made to use a check list of potential problems.
However, at the time of the analysis the list was only partial-
ly developed. As a result, the plant was checked during commis-
sioning by a combination of personal observation and formal
check list checks. Consequently, the commissioning served as a
help in developing check lists. (A formal trial of their ef-
fectiviness is planned later, on another part of the plant).

This resulting lists are shown in appendix 1.

A list of the technical problems arising during the plant tes-
ting and commissioning is given below. Some of the problems are
precisely those to be expected during commissioning, and can be
regarded as '"mormal". some could perhaps have been prevented by
a deeper or different form of risk analysis. These are

discussed in more detail in later sections.

5.1.7. Problems arising during final check out

and commissioning

Before 1listing the problems arising during commissioning it
should be pointed out that by comparison with other plants,
this plant was commissioned rapidly, and plant start up can be

regarded as successful and relatively problem free.
A list of problems found is as follows.

1) Some flanges and valve sets leaked during the commis-
sioning, after the vacuum testing had been completed
successfully. As far as the flanges were concerned
this was a consequence of heating the plant for the
first time. For the valve seats, it appeared that
these (teflon seated ball valves, 2" lines) became
fouled with oxide deposits. As a result the seats
became scratched, and would not seal properely. In

some cases the seats had to be replaced twice.
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This must be regarded as a normal commissioning pro-
blem, but illustrates the feet that reliability and
risk analyses do not apply during the early stages of
plant operation. An especially high standard of
vacuum tightness should generally be the objective in
a plant of this type, to reduce the period during
which a flammable atmosphere exists inside plant

vessels.

During plant check out, it was nescessary to exchange
the PLC controller three times, until a correctly
functioning controller was obtained. This is clearly
an extreme "infant mortality" problem. It must be
regarded, though, as a '"normal'" commissioning pro-
blem, and could hardly be prevented by risk analysis.
Checking procedures ensured that the PLC failures did
not present any safety problem.

Identical high 1level cut out set points had Dbeen
fixed for both starting and stopping the charging
pump. Waves (swash) in the feed tank ensured that the
charging pump would start and stop several times as
the tank became full.

A simple change, providing two set points, slightly
different, for starting and stopping the pump solved
this problem.

The problem solution is a standard one, and the cause
of the problem must be regarded as a simple over-
sight. It is doubtful whether it is reasonable to try
to treat problems at this level of detail in a risk
analysis, but it is perhaps reasonable to add the

problem to instrumentation review checklists.

Problems of this kind can potentially have some safe-
ty implications, since starting and stopping pumps
rapidly can damage seats, and cause fluids to be re-

leased. (in this case flammable fluids).
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One output circuit on a PLC interface was faulty. A

reserve circuit was wired up instead.

This problem must be regarded as a normal commissio-
ning problem. It illustrates though the flexibility
of computer based instrumentation. The problem was
corrected, including reprogramming, within 15 mi-

nutes.

One valve had been installed the wrong way round. The
valve was a mixer for hot and cold water streams, and
it was difficult to see externally which way round
the valve should be fitted.

The result of the error was that only cold water
could be sent to one condenser, and that cold water
could be sent to the hot water system. This affected
not only the plant unit under test but other nearly
units. It took some time to identify what the problem
was.

Valve installation errors are a typical problem in
commissioning, and were not unexpected. The case
illustrated though that even with careful checking
the problem 1is hard to eliminate. The wvalve 1in
Question had been examined several times by several
engineers before the wrong installation was identi-

fied because the installation "looked correct".

The case provides another potential cause to be added
to the 1list of causes of water supply failure, and

can be generalized.

A number of instrument act point adjustments were
required including resetting after the first opera-

tion of the plant.
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This is a normal problem during commissioning.

Drain cocks for the steam jacket of the distillation
kettle had been installed neatly, but in such a way
that on opening, a hot water jet would strike the
lagging on another pipe, and splash the operator. The
problem was quickly cured by fitting a couple of
short pipe sections and bends. This solution worked

perfectly.

[

First arrangement Revised arrangement

A problem of this kind is almost impossible to treat
in a risk analysis during design, since, such detai-
led information on pipe and drain layout 1is rarely

available on drawings.

If a layout and clearance check were made after draw-
ings are completed, then perhaps such problems could
be predicted. But such checks would only really be
practical if computer aided design techniques were
used. It would be possible to add such problems at
design review or pre-start up inspection check lists,
but even then it is difficult to "see" such detailed
problems amid a mass of piping. A fairly direct solu-
tion to problems of this kind would be to provide
standard drawings of such design details, with requi-

red clearances etc.

A "trap'" was found in the sequence control program,
such that a two way drain valve (tee valve) could

only have 1its position changed at one stage in the



9)

10)

11)

- 77 -

distillation sequence. This was at the step in the
procedure at which changeover should normally be re-
quired. But the limitation proved inconvenient in
commissioning, and prevented a potential safety ac-
tion (direction of leaking methanol to a drain) It

served no safety purpose.

The problem arises directly from what is otherwise a
very good safety policy in sequential control design,
that 1is '"only allow actions which are explicitly
known to be safe'". But if such a policy is followed,
it would be a good idea to add a further step to the
sequential control design procedure, asking '"What
further freedom is desired, beyond normal operation'.
(An alternative is to design the sequential control
to prevent only unsafe actions, but such a design

procedure is much more complex, see (1) .

One valve was of the '"fail steady" type. This meant
that it could not follow the normal pattern of valve
control in the PLC, since on shutdown problems could
arise. If the PLC loses track of the valve position,
it will switch the valve to the wrong position. The

problem could be corrected by modifying the software.

Fail steady/Fail leave valves should have position
sensors on them, and alarms to indicate when a valve
is in the "wrong" position. Software should take ac-
count of possible changes is state not ordered by the
computer.

In the present case, the valve was implemented with a

selective "fail to safe position".

Sun shining on the PLC LED display obscures the LED

display completely. Sun shades are required.

An interlock prevents restart after stop in step 7 of

the PLC program - program changes were required.
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If there are two active alarms on the PLC loop dis-
play only one can bas seen at a time. This in unfor-

tunate, but is a feature of the controller chosen.

As it turned out, there was an unexpectedly high wa-
ter content in the feed. At first this was thought to
be a problem of effectiveness in the distillation
When the problem turned out to be more or less perma-
nent, the distillation program was changed. The first
fraction coming over was distilled to the “impure me—
thanol" storage, followed by "pure methanol" to the
first receiver tank, followed once again by "impure

methanol'.

It was found that a single failure in the PLC output
circuits could open the bottom valve on the distilla-
tion kettle at any time!! This included the possi-
bility of releasing boiling methanol!

This is a serious oversight, and was found on making
a2 simple check of the boundary of the plant analysed.
On checking the action sheets the problem had been
found once before, as a general problem. It resulted
in a change in the interlocks on emptying valves, and
it resulted in fitting self closing nozzles to outlet
and inlet lines on most receivers. But already at
that time there was some question of the advisability
of fitting a second valve to the kettle emptying line
because of the problem that crude could gather in

this valve. (The thick residue liquid could freeze).

Because the action sheet was phrased ambiguously, and
because some safety changes were made to reduce the
problem, a complete solution was not reached during

the initial design.

This illustrates the need for careful review of ac-

tions, and also the value which should be obtained
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from automatic analysis. It also illustrates the val-

ue of checks during commissioning.

A good general principle is

"After finding a solution to a safety

problem, reanalyse the solution'.

In this case, because of the timing of the various
analysis meetings, the reanalysis was delayed right

up to the last days of plant testing.

When the plant stopped, one thermocouple ceased to be
washed by the distillate flow. As a result, it
measured the temperature of the heat tracing, rather
than the distillate.

A simple rewiring solved the problem,

Instrument placement is a general problem espescially
for thermocouples and pressure sensors on external
lines which can be blocked - Questions concerning
placement are included in commissioning check 1list,
but it is not always easy to answer the questions
correctly.

Drains were added to the pumps, so that they could be
emptied of water during plant testing using water.
Otherwise, freezing on a cold November night would
have cracked them. The drains will probably not be
needed later with the pumps filled with methanol, but
they may prove convenient during maintenance. They do
present a minor increase in risk since they can be
left open but not nearly so much as a cracked pump
would. This 1is typically a problem which should be

solved by providing standard drawings.

A wrong sign in a temperature control 1loop was
corrected (a question concerning this was already
included in the checklist).
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An interlock was specified during the initial risk
analyses, such that on filling a residue drum, it
would be weighed. As soon as the weight exceed 100
kg, the interlock would stop the filling.

Since the consequence of failure is not great in this
step of the procedure (some cleaning would be needed
if a failure occurred and the drum overfilled) this

was, during the analysis judged to be adequate.

During trials of the plant, it was noticed that the
amount of residue leaving the outlet pipe after the
emptying valve closed was 5 - 10 kg. This represented
the pipe volume after the valve, and was not unexpec-
ted. But the reading mechanism on the weighing ma-
chine was anvinductive sensor placed to sense the
weighing machine pointer. This stopped the filling
perfectly as the 100 kg mark was reached, but the
pointer travelled further, to 107 kg. If the filling
buttom were pressed a second time, the same drum
could be filled further, and this time, the interlock
would not stop the filling.

The problem was '"solved" by fitting a second inter-
lock to prevent filling, unless an empty drum was in
position. This required 1little effort, since there
was already an interlock to ensure that a drum was in
position. (Later the '"solution" was removed, because
an extra empty drum was needed to catch drips from

the pipe).

This case illustrates a general problem in safety
analysis. It is difficult to predict the failure be-
haviour of instruments and actuators which work with
pulse signals. It 1is often difficult to see just
which instruments do work with pulses. Special atten-
tion should be given to this point during instrumen-

tation analysis.
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A slow scumming effect in the residue meant that
drums could not be filled to 100 kg immediately. They
could be qaurter filled, then halffilled later.

This problem could hardly have been predicted during
analysis, and even now is difficult to explain. Ana-
lyses cannot predict everything precisely, and parti-
cularly special substance properties and side reac-
tions are difficult to predict.

During analysis, the problem of blocking in the con-
denser was considered. The possibility of blockage
due to excessive cooling, and therefore freezing of
the product was recognized. But the problem was not
considered to be serious because it was thought that
the condenser coling water should normally be above
the freezing point of product and because the burst
disc would relieve any overpressure resulting from

blockage.

In practice the problem is more frequent than had
been expected. Firstly, the warm water supply was
cooler than expected, at some times. This means that
flow must be controlled carefully to prevent freezing
in the condenser. The second problem was not fully
recognized in the original analysis probably because
it was '"masked". That is, in solving another problem
(blockage due to lack of heat tracing) attention was
drawn away from the heat exchanger. (The check 1list
for "volumes" tends to hide some heat exchanger pro-
blems, and it would seem worthwhile to develop a ha-

zard analysis sheet for heat exchangers alone).

When a condenser treats a vapour which can freeze,
there are several potential problems. Too low a con-
denser temperature, coupled with too high cooling
flow, too low vapour flow, or too low vapour tempera-

ture, will lead to blockage in the condenser. Too



high wvapour flow, too high wvapour temperature, too
high cooling temperature or too low cooling flow,
will result in reduced condensation. Vapour will pass
through the condenser.

In the present case, it will pass through the conden-
ser to the cold trap, and tend to condense and cause
blockage there.

One disturbance has been noted which can cause this.
If the plant is stopped during product distillation,
under vacuum, pressure rises. On restarting the di-
stillation, heating from the steam jacket can heat
the product charge faster than the vacuum pump can
establish a vacuum. The result is boiling at a higher
temperature, since the partial pressure of urethane
in the distillation kettle rapidly reaches the total
pressure 1in the whole distillation apparatus. The
result of this, in turn, 1is an excessively high

vapour temperature to the condenser.

The problem can be solved by adapting the control
system in any of a number of ways. The main problem
is to ensure that the control adapts to all the like-
ly disturbances.

This example illustrates a general problem in control
system design for process plant. That is, that on a
simple structural basis, one can, using for example

risk analysis techniques, predict the possibility of

disturbances. But to predict their size, their quan-
titative effect, and their importance, is difficult.
The methods for control system design and for risk
analysis are at present inadequate to treat this

problem.
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6. Information program

The objective of the analysis was to ensure a safe design. Sin-
ce the plant designers were a part of the analysis team, trans-
fer of information was direct (or unnecessary). All analysis
information was immediately available throughout the design
process.

7. Conclusions

The analysis can be said to have fulfilled its goal, both in
providing a safe design basis and in illustrating and investi-
gating the use of risk analysis. Moreover it has served as a
basis for improving safety analysis techniques. Just how safe
the resulting plant is will only be demonstrated after several
years experience, but certainly many problems have been avoided
as a result of the analysis. All of the recomendations arising
from the analysis were directly included in the plant design.
The anlysis method developed are currently 1in use by six

groups, in a total of about ten projects.

The general conclusion can be drawn that no single analysis
method would be adequate for a batch plant of this type
(probably not for any chemical plant) but that the overall
program of analyses was of benefit to the design and also very
cost effective.

7.2. Future work

The planned future work for this plant is to continue with

three further analyses for comparison purposes. These are

- a fault tree analysis (quantitative) making use of

automatic analysis methods.
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- an IFAL analysis
(analysis of fire an explosion risk on a fairly

approximate basis).

- a Dow Index Study
(Indicates safety equipment level desired, but does
not calculate risk).

Additionally further work is felt to be needed on the action
error and Safety Officer check methods, since the plant studied

was in some ways rather special (highly automated).

The study revealed an acute need for failure rate data for che-
mical plant components, and even more acute need for methods
for analysis of computer control programs. It is hoped to be
able to take up these topics later.

8.1. Lessons learned

Mechanical design

In analysis of plant hazards, the material used initially is
the plant flow sheet and piping and instrumentation diagram. At
these stage of analysis, several points concerning mechanical
design are decided, and many assumptions are made implicitly,
especially on the basis of layout of components on paper. But
to take mechanical designers into the team is undesirable at an
early analysis stage. The result of doing so is, for them,
extensive boredom, since there are few problems which concern
them, and many they cannot understand, not having the necessary

background information.

But there are also many analysis problems which cannot be sol-

ved without taking plant layout into account.

1) Excessive head on tank drain lines can, if the tank
does not have a vacuum breaker or vent, give a vacuum

and such in the tank.
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Tanks, especially those receiving distillate can of-
ten be placed high enough to allow emptying directly
to transport containers, tankers etc. This avoids the

need for pumps, and resulting risks.

Pumps can be placed directly over other equipment,
depending on the character of the liquid pumped, can

be a direct hazard.

Air locks can prevent or reduce flow from a tank

Liquid traps, not seen on flow sheets, can be intro-
duced during layout, and others which appear to be a
problem on the flow sheet, c¢an be removed during
layout (a case of this kind arose during the present
plant design).

New flow routes can be established, and others remo-
ved, by changing the relative height of vessels.

There is a need for some way of communicating need and purpose

to mechanical designers, which is better than that available at

present.

There is also a strong need for an analysis procedure which

takes direct account of problems arising during plant layout.

8.2. Lessons learned

Controller programming

Although a complete study of controller programming could not

be made during this project, som points arose which should pro-

vide useful experience.
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The procedure followed for controller programming was the fol-

lowing

1)

2)

3)

The individual steps in the procedure written down.

The individual steps were described in more detail on
sheets which provided for

a) Step description

b) Valve positions

c) Listing of valves and motors activated
d) Parallel processes

e) Interlocks and start conditions

f) End conditions for the step.

These conditions were transformed to statements for
the PL 550 controller

Lessons learned were:

1)

2)

It would be useful to have purpose expressed for each
step. (similarly on instrument list).

Before starting documentation, in detail for procedu-
res the following questions should be posed.
a) Which process steps may be stopped during their

eXecution?

b) What reasons can be envisioned for wanting to

stop.

¢) Can the plant be shut down and drained from any

step?
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d) Can the plant be restarted after stopping?

3) Care should be taken with instruments giving pulse
signals, and with actuators responding to pulses. For
these the question should be posed

What will happen if the controller/operator

forgets the current position?
4) Programmed controllers are very sensitive to errors

in the manufactures software. These are always pre-

sent, and give significant saftey problems.

8.3. Lessons learned

Completeness of existing procedures

Existing hazard and operability procedures are "internally com-
plete", at least with respect to starting points. That is, they
allow a complete analysis of disturbances within a plant model
which 1is described by energy and mass balance equations and
property equations. From a theoretical point of view, the "ho-
les" in the procedure should then be

- omission of an energy or mass storage
Examples are oversights of pockets, low points in piping etc.

~ Omission of a substance or a form of energy
In particular the current analysis forms ignore potential ener-
gy, in not accounting for component height. An example of this
was escape of methanol by back flow from a riser through a

charging pump.

- Oversight of a substance property
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An example of this was scumming of residue
- Oversight of an energy or mass transfer.
In practice there is a potential for further omissions.

- Not all components are shown on drawings e.g. drain val-
ves.

- Not all causes are identified in filling out hazard tab-
les. Use of fault tree procedures would improve com-
pleteness, but generally would be very time consuming.
Automation might reduce this problem.

- Not all problems identified are judged to be sufficient-
ly serious to require in depth investigation, or solu-
tion.

- A potential problem may be identified, but its actual
appearance may depend on numerical values in design of
the plant. But insufficient information may be available
to allow the magnitude of the problem, or even its ac-

tual existence, to be Jjudged.

In particular it is almost impossible to predict magnitude of

disturbances in control loops prior to plant construction.

No serious oversights in the action/error analysis could be
found, but supplementary questions should be added to check

list as follows.

"Stop of process step"
"Restart of process step after stopping"

"Shutdown of process step"

Especial problems were found to arise from omission of compo-
nents and hazards on the boundary of the plant analysed. Choice
of plant boundary should be made very carefully on the basis of
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"What hazards are we omitting, and why". Also special pro-
cedures should be applied to check the boundary.

8.4. Improvements in procedures resulting from the study

As a result of the experience gained during this project a num-
ber of significant improvement in analysis procedures have been

made.

First, standard analysis sheets have been prepared which great-
ly reduce the effort in Hazop and Action error analysis. Quali-
ty is also improved. These sheets are now used by six companies

(at the time of writing).

Secondly, check lists have been derived for problems which can
only be found after plant construction.

Thirdly, principles have been developed for steering the Hazop
and Action Error analyses, to minimize effort without the risk
of additional oversights.

Finally, the strength and weakness of individual procedures can

now be documented.

9. Evaluation

A. Resources

The resources used for the analysis (engineer time) were (for
the distillation unit)

Hazop analysis: 15 man hours
(3 persons) in meetings

+ 10 man hours at desk
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for 9 volume

3 man hours per volume

Action Error analysis 45 man hours

(3 persons) in meetings
for 15 steps

3 man hours per step

Error cause analysis % hour per step
Hazard tree analysis 3 persons x % hr.
Safety officer checks 2 persons x 12 man hours
B Methods and criteria
a) Acceptance criteria

b)

c)

The single failure criterion used was very easy to
apply and fulfill.

Data Collection

The data needed for the analysis were all either di-
rectly available, or required only a short visit to
the company library.

Analysis methods.

The methods for hazard identification showed themsel-
ves to be logically complete when property applied
within well defined classes of hazards. Omissions and

oversights fall into two classes.



- 91 -

1) Lack of proper application

2) Problems which are systematically excluded from
consideration by the method.

In general a method will be improperely applied because Qf lack
of information. Both Hazop analyses as performed, and cause
consequence analyses used to support action error analyses,
suffer from oversights as follows.

-~ ommitted energy or mass storage
- omitted energy or mass transport
- overlooked or unknown chemical

- reactions or substance properties
All of these classes were observed in the present analysis.,
Additionally Hazop analysis oversaw many hazards of the form

- Valve opens as a result of a misoperation
- Valve remains open as a result of a forgotten or failed

operation

This seems to be natural since it is hard in a Hazop analysis
to relate to required operations, there being no basis for such
relations in the analysis procedure. Operating procedure infor-

mation is not used..

Other systematic omissions (both methods) were to overlook pi-
pes as potential storage vessels, and to overlook the proper-
ties of vessel height as a source of energy (such information
was not readily available during the analysis.

Finally, some hazards were found, but were either not judged to
be significant, or were overlooked during subsequent analyses
of the plant.
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On the assumption that all hazards have now been found, the
degree of completeness resulting from the different analyses

was then for hazards which could be identified from diagrams

Hazop 35 %
+ Action Error 99, 0%
+ Hazard tree 99,5%

+ Safety officer checks 100 %
of total problems identified.
(Circa 200 significant hazard sources initially).

There were about twenty additional hazards which could not have
been identified in inspection of diagram, but were identified
during commissioning checks, which brings the overall complete-

ness of the desk analyses down to about 90%.

The discrimination of the analysis, that is, the proportion of
hazards identified which appear to be significant after com-

pletion of construction, is about 90%.

These figures apply to analysis at the component failure made
and action error level, which was the level of the analysis
performed. A more detailed analysis of component failure causes

would be expected to be less complete.

The conclusion one can draw from this is that risk analysis
methods should be combined if good coverage of hazards is to be

achived.
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C GP's erfaringer med sikkerhedsanalyse p& en methanol/

urethan-destillationsenhed.

Et af de problemer, man som kemiingenigr i Danmark star
overfor, er, at ingen dansk kemisk virksomhed er stor
nok til at besidde de erfaringer og standards med hensyn
til sikkerhed, som man har brug for, ndr man er beskaf-
tiget med potentielt farlige produktioner.

Problemet forstgrres ved, at den undervisning ihgeni¢rer
og teknikere modtager i sikkerhedsspgrgsmdl er af begran-
set omfang, og for civilingenigrens vedkommende er den

ikke engang obligatorisk.

Endelig kan man undre sig over, at den ellers kolosale
kemisk-tekniske hé&ndbogslitteratur ikke omfatter noget
alment kendt standardvark om sikkerhed.

Slar man f.eks. op i den ellers fortraffelige Perry og
Chilton CHEMICAL ENGINEERS HANDBOOK under ordene "flame
arrestars”, "lightning" eller "static electricity", finder

man intet.

Vi mener derfor, at de af RIS® udarbejdede analysemeto-
der kan vare til en betydelig hj=zlp. En sikkerhedsanaly-
se baseret pad den metode og de skemaer, som J. R. Taylor,
RIS@®, har udviklet, sikrer en systematisk gennemgang af
procesanlagget med hensyn til driftssikkerhed og farlige
situationer, som kan opstd i anlagget.

Skemaerne med de mange check-spgrgsmal danner en god ba-
sis for diskussion i en gruppe med deltagerne fra projek-
tering/sikkerhedsafdelingen og drift. Sikkerhedsanalysens
kvalitet vil dog afhange af deltagernes erfaringer og kre-
ativitet.
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Skemaerne sikrer, at sikkcerhedsanalysen bliver godt do-
kumenteret i takt med, at sikkerhedsanalysen udfgres.

Tidsforbruget p& %-1% time pr. apparat er rimeligt. Nar
man kender teknikken, kan sikkerhedsanalysen foretages
hurtigere, dog med fare for at analysen bliver mere over-
fladisk, fordi gentagelsen af de samme kendte spgrgsmil

virker trattende.

Det er derfor vigtigt, at der ikke holdes for lange sik-
kerhedsmgder (hgjst 2-3 timer).

Det er svaert at vurdere, hvad sikkerhedsanalysen af me-
thanol/urethan—destillationsenheden har sparet Grindsted
Products A/S i tid, penge og undgdede uheld, men vores

erfaringer med metoden har bevirket, at vi har brugt den
pd andre anlag uden deltagelse af medarbejdere fra RIS@.

Metoden b¢r beskrives i en let tilgangelig handbog med
forklaring af, hvordan skemaerne bruges og med et eksem-
pel pd skemaernes brug pd et simpelt anlag.

Hadndbogen b¢r ggres tilgangelig for interesserede firma-

er.

Grindsted, den 04.06.81

< ’ |
> %}?/Q rgf"”“/___‘_z_- N
S. Kjersgdrd Orla Hansen
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D General Experience

The resources used for the analysis were about 3 man hours per
vessel for the Hazop analysis and about the same per operatio-
nal step for the action error analysis. It appears that the

more people involved in an analysis, the longer it takes in

absolute time, so that more people require more than proportio—
nally more man time. It would be interesting to compare the
quality of result and time taken for a single engineer to per-

form the analysis.

The brain storming group approach used in this project though,
served two purposes beyond the direct one of completing the
analysis. That is, it allowed a considerable amount of necessa-
ry communication to take place, and it served an educational

purpose.

The later steps in this project should give a basis for compa-
ring the purely qualitative analysis presented here with
quantitative analysis methods.
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