44,431 research outputs found

    Low-density series expansions for directed percolation III. Some two-dimensional lattices

    Full text link
    We use very efficient algorithms to calculate low-density series for bond and site percolation on the directed triangular, honeycomb, kagom\'e, and (4.82)(4.8^2) lattices. Analysis of the series yields accurate estimates of the critical point pcp_c and various critical exponents. The exponent estimates differ only in the 5th5^{th} digit, thus providing strong numerical evidence for the expected universality of the critical exponents for directed percolation problems. In addition we also study the non-physical singularities of the series.Comment: 20 pages, 8 figure

    Low-density series expansions for directed percolation II: The square lattice with a wall

    Full text link
    A new algorithm for the derivation of low-density expansions has been used to greatly extend the series for moments of the pair-connectedness on the directed square lattice near an impenetrable wall. Analysis of the series yields very accurate estimates for the critical point and exponents. In particular, the estimate for the exponent characterizing the average cluster length near the wall, τ1=1.00014(2)\tau_1=1.00014(2), appears to exclude the conjecture τ1=1\tau_1=1. The critical point and the exponents ν\nu_{\parallel} and ν\nu_{\perp} have the same values as for the bulk problem.Comment: 8 pages, 1 figur

    Directed percolation near a wall

    Full text link
    Series expansion methods are used to study directed bond percolation clusters on the square lattice whose lateral growth is restricted by a wall parallel to the growth direction. The percolation threshold pcp_c is found to be the same as that for the bulk. However the values of the critical exponents for the percolation probability and mean cluster size are quite different from those for the bulk and are estimated by β1=0.7338±0.0001\beta_1 = 0.7338 \pm 0.0001 and γ1=1.8207±0.0004\gamma_1 = 1.8207 \pm 0.0004 respectively. On the other hand the exponent Δ1=β1+γ1\Delta_1=\beta_1 +\gamma_1 characterising the scale of the cluster size distribution is found to be unchanged by the presence of the wall. The parallel connectedness length, which is the scale for the cluster length distribution, has an exponent which we estimate to be ν1=1.7337±0.0004\nu_{1\parallel} = 1.7337 \pm 0.0004 and is also unchanged. The exponent τ1\tau_1 of the mean cluster length is related to β1\beta_1 and ν1\nu_{1\parallel} by the scaling relation ν1=β1+τ1\nu_{1\parallel} = \beta_1 + \tau_1 and using the above estimates yields τ1=1\tau_1 = 1 to within the accuracy of our results. We conjecture that this value of τ1\tau_1 is exact and further support for the conjecture is provided by the direct series expansion estimate τ1=1.0002±0.0003\tau_1= 1.0002 \pm 0.0003.Comment: 12pages LaTeX, ioplppt.sty, to appear in J. Phys.

    Coupled ferro-antiferromagnetic Heisenberg bilayers investigated by many-body Green's function theory

    Full text link
    A theory of coupled ferro- and antiferromagnetic Heisenberg layers is developed within the framework of many-body Green's function theory (GFT) that allows non-collinear magnetic arrangements by introducing sublattice structures. As an example, the coupled ferro- antiferromagnetic (FM-AFM) bilayer is investigated. We compare the results with those of bilayers with purely ferromagnetic or antiferromagnetic couplings. In each case we also show the corresponding results of mean field theory (MFT), in which magnon excitations are completely neglected. There are significant differences between GFT and MFT. A remarkable finding is that for the coupled FM-AFM bilayer the critical temperature decreases with increasing interlayer coupling strength for a simple cubic lattice, whereas the opposite is true for an fcc lattice as well as for MFT for both lattice types.Comment: 17 pages, 6 figures, accepted for publication in J. Phys. Condens. Matter, missing fig.5 adde

    Letter from J. W. Jensen

    Get PDF
    Letter concerning a position as assistant professor of civil engineering at Utah Agricultural College

    Low-density series expansions for directed percolation IV. Temporal disorder

    Full text link
    We introduce a model for temporally disordered directed percolation in which the probability of spreading from a vertex (t,x)(t,x), where tt is the time and xx is the spatial coordinate, is independent of xx but depends on tt. Using a very efficient algorithm we calculate low-density series for bond percolation on the directed square lattice. Analysis of the series yields estimates for the critical point pcp_c and various critical exponents which are consistent with a continuous change of the critical parameters as the strength of the disorder is increased.Comment: 11 pages, 3 figure

    Arrays of Josephson junctions in an environment with vanishing impedance

    Full text link
    The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.Comment: 13 pages, 9 figures, uses RevTeX and epsfig, Revised version, Better readability and some new result

    An analytical and experimental investigation of a 1.8 by 3.7 meter Fresnel lens solar concentrator

    Get PDF
    Line-focusing acrylic Fresnel lenses with application potential in the 200 to 370 C range are being analytically and experimentally evaluated. Investigations previously conducted with a 56 cm wide lens have been extended by the present study to experimentation/analyses with a 1.8 by 3.7 m lens. A measured peak concentration ratio of 64 with 90 percent of the transmitted energy focused into a 5.0 cm width was achieved. A peak concentration of 61 and a 90 percent target width of 4.5 cm were analytically computed. The experimental and analytical lens transmittance was 81 percent and 86 percent, respectively. The lens also was interfaced with a receiver assembly and operated in the collection mode. The collection efficiency ranged from 42 percent at 100 C to 26 percent at 300 C

    Probability distribution of residence times of grains in models of ricepiles

    Get PDF
    We study the probability distribution of residence time of a grain at a site, and its total residence time inside a pile, in different ricepile models. The tails of these distributions are dominated by the grains that get deeply buried in the pile. We show that, for a pile of size LL, the probabilities that the residence time at a site or the total residence time is greater than tt, both decay as 1/t(lnt)x1/t(\ln t)^x for Lωtexp(Lγ)L^{\omega} \ll t \ll \exp(L^{\gamma}) where γ\gamma is an exponent 1 \ge 1, and values of xx and ω\omega in the two cases are different. In the Oslo ricepile model we find that the probability that the residence time TiT_i at a site ii being greater than or equal to tt, is a non-monotonic function of LL for a fixed tt and does not obey simple scaling. For model in dd dimensions, we show that the probability of minimum slope configuration in the steady state, for large LL, varies as exp(κLd+2)\exp(-\kappa L^{d+2}) where κ\kappa is a constant, and hence γ=d+2 \gamma = d+2.Comment: 13 pages, 23 figures, Submitted to Phys. Rev.

    Scattering into Cones and Flux across Surfaces in Quantum Mechanics: a Pathwise Probabilistic Approach

    Full text link
    We show how the scattering-into-cones and flux-across-surfaces theorems in Quantum Mechanics have very intuitive pathwise probabilistic versions based on some results by Carlen about large time behaviour of paths of Nelson diffusions. The quantum mechanical results can be then recovered by taking expectations in our pathwise statements.Comment: To appear in Journal of Mathematical Physic
    corecore