32,405 research outputs found
Exact, convergent periodic-orbit expansions of individual energy eigenvalues of regular quantum graphs
We present exact, explicit, convergent periodic-orbit expansions for
individual energy levels of regular quantum graphs. One simple application is
the energy levels of a particle in a piecewise constant potential. Since the
classical ray trajectories (including ray splitting) in such systems are
strongly chaotic, this result provides the first explicit quantization of a
classically chaotic system.Comment: 25 pages, 5 figure
Relative production rates of He, Be, C in astrophysical environments
We assume an environment of neutrons and -particles of given density
and temperature where nuclear syntheses into He, Be and C
are possible. We investigate the resulting relative abundance as a function of
density and temperature. When the relative abundance of -particles
is between 0.2 and 0.9, or larger than 0.9, the largest production
is Be or C, respectively. When He is mostly
frequently produced for temperatures above about 2 GK whereas the Be
production dominates at smaller temperatures.Comment: 5 pages, 4 figure
Structure and three-body decay of Be resonances
The complex-rotated hyperspherical adiabatic method is used to study the
decay of low-lying Be resonances into one neutron and two
-particles. We investigate the six resonances above the break-up
threshold and below 6 MeV: , and . The
short-distance properties of each resonance are studied, and the different
angular momentum and parity configurations of the Be and He two-body
substructures are determined. We compute the branching ratio for sequential
decay via the Be ground state which qualitatively is consistent with
measurements. We extract the momentum distributions after decay directly into
the three-body continuum from the large-distance asymptotic structures. The
kinematically complete results are presented as Dalitz plots as well as
projections on given neutron and -energy. The distributions are
discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review
Structure and three-body decay of Be resonances
The complex-rotated hyperspherical adiabatic method is used to study the
decay of low-lying Be resonances into one neutron and two
-particles. We investigate the six resonances above the break-up
threshold and below 6 MeV: , and . The
short-distance properties of each resonance are studied, and the different
angular momentum and parity configurations of the Be and He two-body
substructures are determined. We compute the branching ratio for sequential
decay via the Be ground state which qualitatively is consistent with
measurements. We extract the momentum distributions after decay directly into
the three-body continuum from the large-distance asymptotic structures. The
kinematically complete results are presented as Dalitz plots as well as
projections on given neutron and -energy. The distributions are
discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review
Momentum distributions from three-body decaying 9Be and 9B resonances
The complex-rotated hyperspherical adiabatic method is used to study the
decay of low-lying Be and B resonances into , and
or . We consider six low-lying resonances of Be (,
and ) and one resonance of B () to compare with. The
properties of the resonances at large distances are decisive for the momentum
distributions of the three decaying fragments. Systematic detailed energy
correlations of Dalitz plots are presented.Comment: 4 pages, 2 figures. Proceedings of the SOTANCP2 conference held in
Brussels in May 201
Nonuniversal Critical Spreading in Two Dimensions
Continuous phase transitions are studied in a two dimensional nonequilibrium
model with an infinite number of absorbing configurations. Spreading from a
localized source is characterized by nonuniversal critical exponents, which
vary continuously with the density phi in the surrounding region. The exponent
delta changes by more than an order of magnitude, and eta changes sign. The
location of the critical point also depends on phi, which has important
implications for scaling. As expected on the basis of universality, the static
critical behavior belongs to the directed percolation class.Comment: 21 pages, REVTeX, figures available upon reques
Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor
Reduction of the peak heat loads on the plasma facing components is essential
for the success of the next generation of high fusion power tokamaks such as
the International Thermonuclear Experimental Reactor (ITER) 1 . Many present
concepts for accomplishing this involve the use of atomic processes to transfer
the heat from the plasma to the main chamber and divertor chamber walls and
much of the experimental and theoretical physics research in the fusion program
is directed toward this issue. The results of these experiments and
calculations are the result of a complex interplay of many processes. In order
to identify the key features of these experiments and calculations and the
relative role of the primary atomic processes, simple quasi-analytic models and
the latest atomic physics rate coefficients and cross sections have been used
to assess the relative roles of central radiation losses through
bremsstrahlung, impurity radiation losses from the plasma edge, charge exchange
and hydrogen radiation losses from the scrape-off layer and divertor plasma and
impurity radiation losses from the divertor plasma. This anaysis indicates that
bremsstrahlung from the plasma center and impurity radiation from the plasma
edge and divertor plasma can each play a significant role in reducing the power
to the divertor plates, and identifies many of the factors which determine the
relative role of each process. For instance, for radiation losses in the
divertor to be large enough to radiate the power in the divertor for high power
experiments, a neutral fraction of 10-3 to 10-2 and an impurity recycling rate
of netrecycle of ~ 10^16 s m^-3 will be required in the divertor.Comment: Preprint for the 1994 APSDPP meeting, uuencoded and gzipped
postscript with 22 figures, 40 pages
- …