46,135 research outputs found

    Efimov states in asymmetric systems

    Full text link
    The conditions for occurrence of the Efimov effect is briefly described using hyperspherical coordinates. The strength of the effective hyperradial ρ2\rho^{-2} potential appearing for two or three large scattering lengths is computed and discussed as function of two independent mass ratios of the three constituent particles. The effect is by far most pronounced for asymmetric systems with three very different masses. One Efimov state may by chance appear in nuclei. Many states could be present for systems with one electron and two neutral atoms or molecules. Estimates of the number of states and their sizes and energies are given.Comment: 7 pages, 3 figure

    Orientational phase transitions in anisotropic rare-earth magnets at low temperatures

    Full text link
    Orientational phase transitions are investigated within the Heisenberg model with single-site anisotropy. The temperature dependence of the cone angle is calculated within the spin-wave theory. The role of the quantum renormalizations of anisotropy constants is discussed. A comparison with the experimental data on the cone-plane orientational transition in holmium is performed.Comment: 9 pages, LaTeX, 3 figure

    Quantum noise limited and entanglement-assisted magnetometry

    Full text link
    We study experimentally the fundamental limits of sensitivity of an atomic radio-frequency magnetometer. First we apply an optimal sequence of state preparation, evolution, and the back-action evading measurement to achieve a nearly projection noise limited sensitivity. We furthermore experimentally demonstrate that Einstein-Podolsky-Rosen (EPR) entanglement of atoms generated by a measurement enhances the sensitivity to pulsed magnetic fields. We demonstrate this quantum limited sensing in a magnetometer utilizing a truly macroscopic ensemble of 1.5*10^12 atoms which allows us to achieve sub-femtoTesla/sqrt(Hz) sensitivity.Comment: To appear in Physical Review Letters, April 9 issue (provisionally

    Generic Sandpile Models Have Directed Percolation Exponents

    Get PDF
    We study sandpile models with stochastic toppling rules and having sticky grains so that with a non-zero probability no toppling occurs, even if the local height of pile exceeds the threshold value. Dissipation is introduced by adding a small probability of particle loss at each toppling. Generically, for models with a preferred direction, the avalanche exponents are those of critical directed percolation clusters. For undirected models, avalanche exponents are those of directed percolation clusters in one higher dimension.Comment: 4 pages, 4 figures, minor change

    Modeling temporal fluctuations in avalanching systems

    Get PDF
    We demonstrate how to model the toppling activity in avalanching systems by stochastic differential equations (SDEs). The theory is developed as a generalization of the classical mean field approach to sandpile dynamics by formulating it as a generalization of Itoh's SDE. This equation contains a fractional Gaussian noise term representing the branching of an avalanche into small active clusters, and a drift term reflecting the tendency for small avalanches to grow and large avalanches to be constricted by the finite system size. If one defines avalanching to take place when the toppling activity exceeds a certain threshold the stochastic model allows us to compute the avalanche exponents in the continum limit as functions of the Hurst exponent of the noise. The results are found to agree well with numerical simulations in the Bak-Tang-Wiesenfeld and Zhang sandpile models. The stochastic model also provides a method for computing the probability density functions of the fluctuations in the toppling activity itself. We show that the sandpiles do not belong to the class of phenomena giving rise to universal non-Gaussian probability density functions for the global activity. Moreover, we demonstrate essential differences between the fluctuations of total kinetic energy in a two-dimensional turbulence simulation and the toppling activity in sandpiles.Comment: 14 pages, 11 figure

    Phonon-induced quadrupolar ordering of the magnetic superconductor TmNi2_2B2_2C

    Get PDF
    We present synchrotron x-ray diffraction studies revealing that the lattice of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q increases and the amplitude of the displacements is drastically enhanced, by a factor of 10 at 60 kOe, when a magnetic field is applied along [100]. The distortion occurs at the same wave vector as the antiferromagnetic ordering induced by the a-axis field. A model is presented that accounts for the properties of the quadrupolar phase and explains the peculiar behavior of the antiferromagnetic ordering previously observed in this compound.Comment: submitted to PR

    Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    Full text link
    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for {\it in situ}, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon energy, high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<<100 ps) and spatial (\sim2 μ\mum) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading
    corecore