The highly transient nature of shock loading and pronounced microstructure
effects on dynamic materials response call for {\it in situ}, temporally and
spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray
sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction
under dynamic loading, due to their high photon energy, high photon fluxes,
high coherency, and high pulse repetition rates. The feasibility of bulk-scale
gas gun shock experiments with dynamic x-ray PCI and diffraction measurements
was investigated at the beamline 32ID-B of the Advanced Photon Source. The
x-ray beam characteristics, experimental setup, x-ray diagnostics, and static
and dynamic test results are described. We demonstrate ultrafast, multiframe,
single-pulse PCI measurements with unprecedented temporal (<100 ps) and
spatial (∼2 μm) resolutions for bulk-scale shock experiments, as well
as single-pulse dynamic Laue diffraction. The results not only substantiate the
potential of synchrotron-based experiments for addressing a variety of shock
physics problems, but also allow us to identify the technical challenges
related to image detection, x-ray source, and dynamic loading