2,987 research outputs found

    Self-Rated Health as a Predictor of Death after Two Years:The Importance of Physical and Mental Wellbeing Postintensive Care

    Get PDF
    Introduction. The objective of this study is, among half-year intensive care survivors, to determine whether self-assessment of health can predict two-year mortality. Methods. The study is a prospective cohort study based on the Procalcitonin and Survival Study trial. Half-year survivors from this 1200-patient multicenter intensive care trial were sent the SF-36 questionnaire. We used both a simple one-item question and multiple questions summarized as a Physical Component Summary (PCS) and a Mental Component Summary (MCS) score. The responders were followed for vital status 730 days after inclusion. Answers were dichotomized into a low-risk and a high-risk group and hazard ratios (HR) with 95% confidence interval (CI) were calculated by Cox proportional hazard analyses. Conclusion. We found that self-rated health measured by a single question was a strong independent predictor of two-year all-cause mortality (HR: 1.8; 95% CI: 1.1–3.0). The multi-item component scores of the SF-36 also predicted two-year mortality (PCS: HR: 2.9; 95% CI 1.7–5.0) (MCS: HR: 1.9; 95% CI 1.1–3.4). These results suggest that self-rated health questions could help in identifying patients at excess risk. Randomized controlled trials are needed to test whether our findings represent causality

    Prevalence and characterization of plasmids carrying sulfonamide resistance genes among <em>Escherichia coli</em> from pigs, pig carcasses and human

    Get PDF
    BACKGROUND: Sulfonamide resistance is very common in Escherichia coli. The aim of this study was to characterize plasmids carrying sulfonamide resistance genes (sul1, sul2 and sul3) in E. coli isolated from pigs and humans with a specific objective to assess the genetic diversity of plasmids involved in the mobility of sul genes. METHODS: A total of 501 E. coli isolates from pig feces, pig carcasses and human stools were tested for their susceptibility to selected antimicrobial. Multiplex PCR was conducted to detect the presence of three sul genes among the sulfonamide-resistant E. coli isolates. Fifty-seven sulfonamide-resistant E. coli were selected based on presence of sul resistance genes and subjected to conjugation and/or transformation experiments. S1 nuclease digestion followed by pulsed-field gel electrophoresis was used to visualize and determine the size of plasmids. Plasmids carrying sul genes were characterized by PCR-based replicon typing to allow a comparison of the types of sul genes, the reservoir and plasmid present. RESULTS: A total of 109/501 isolates exhibited sulfonamide resistance. The relative prevalences of sul genes from the three reservoirs (pigs, pig carcasses and humans) were 65%, 45% and 12% for sul2, sul1, and sul3, respectively. Transfer of resistance through conjugation was observed in 42/57 isolates. Resistances to streptomycin, ampicillin and trimethoprim were co-transferred in most strains. Class 1 integrons were present in 80% of sul1-carrying plasmids and 100% of sul3-carrying plasmids, but only in 5% of sul2-carrying plasmids. The sul plasmids ranged from 33 to 160-kb in size and belonged to nine different incompatibility (Inc) groups: FII, FIB, I1, FIA, B/O, FIC, N, HI1 and X1. IncFII was the dominant type in sul2-carrying plasmids (52%), while IncI1 was the most common type in sul1 and sul3-carrying plasmids (33% and 45%, respectively). Multireplicons were found associated with all three sul genes. CONCLUSIONS: Sul genes were distributed widely in E. coli isolated from pigs and humans with sul2 being most prevalent. Sul-carrying plasmids belonged to diverse replicon types, but most of detected plasmids were conjugative enabling horizontal transfer. IncFII seems to be the dominant replicon type in sul2-carrying plasmids from all three sources

    Electrodialytic upgrading of three different municipal solid waste incineration residue types with focus on Cr, Pb, Zn, Mn, Mo, Sb, Se, V, Cl and SO<sub>4</sub>

    Get PDF
    Handling of air pollution control (APC) residues from municipal solid waste incineration (MSWI) is a challenge due to its toxicity and high leaching of toxic elements and salts. Electrodialysis (ED) of the material has shown potential for reduction of leaching of toxic elements and salts to produce a material feasible for substitution of cement in mortar. In this work results of 23 pilot-scale experiments (5–8 kg APC residue each) in electrodialysis stack designed to investigate the leaching properties as a function of time and current density for APC residue from semi-dry and wet flue-gas cleaning systems, as well as MSWI fly ash without flue-gas cleaning products are reported. Significant leaching reduction of the critical elements Pb, Zn and Cl was obtained. The final leaching, however, depended mostly on the initial leaching, thus as leaching from fly ash and residue of wet flue-gas cleaning was lower before treatment compared to residues from semidry flue-gas cleaning, both Pb and Zn leaching could be reduced to lower levels in those materials, and they therefore appear more suitable for use in construction materials. The leaching reduction of Zn and to some degree Pb decreased with longer retention times and higher current densities. Cr and SO4 leaching increased during ED treatment, with lower increase at higher current. Washing or carbonation in combination with ED significantly reduced leaching of Pb and Zn from semidry residue. An indication of a similar effect to carbonation by simultaneous aeration with ED was observed and should be investigated further. While Mn and Mo leaching did not, Se, V and Sb leaching exceeded threshold values in semidry residue. The leaching of V seemed to increase while Se and Sb remained more or less constant during ED treatment.info:eu-repo/semantics/publishedVersio

    The exometabolome of microbial communities inhabiting bare ice surfaces on the southern Greenland Ice Sheet

    Get PDF
    Microbial blooms colonize the Greenland Ice Sheet bare ice surface during the ablation season and significantly reduce its albedo. On the ice surface, microbes are exposed to high levels of irradiance, freeze–thaw cycles, and low nutrient concentrations. It is well known that microorganisms secrete metabolites to maintain homeostasis, communicate with other microorganisms, and defend themselves. Yet, the exometabolome of supraglacial microbial blooms, dominated by the pigmented glacier ice algae Ancylonema alaskanum and Ancylonema nordenskiöldii, remains thus far unstudied. Here, we use a high-resolution mass spectrometry-based untargeted metabolomics workflow to identify metabolites in the exometabolome of microbial blooms on the surface of the southern tip of the Greenland Ice Sheet. Samples were collected every 6 h across two diurnal cycles at 5 replicate sampling sites with high similarity in community composition, in terms of orders and phyla present. Time of sampling explained 46% (permutational multivariate analysis of variance [PERMANOVA], pseudo-F = 3.7771, p = 0.001) and 27% (PERMANOVA, pseudo-F = 1.8705, p = 0.001) of variance in the exometabolome across the two diurnal cycles. Annotated metabolites included riboflavin, lumichrome, tryptophan, and azelaic acid, all of which have demonstrated roles in microbe–microbe interactions in other ecosystems and should be tested for potential roles in the development of microbial blooms on bare ice surfaces

    The gender differences in growth hormone-binding protein and leptin persist in 80-year-old men and women and is not caused by sex hormones.

    Get PDF
    objective Leptin and growth hormone-binding protein (GHBP) both show gender differences that might be explained by sex hormones. To study the potential relevance of oestradiol and testosterone, we have examined 80-year-old subjects in whom oestradiol is higher in men than in women. The interrelationships between leptin, insulin, GHBP and fat mass in this age group were also investigated. design and subjects Ninety-four subjects (55 females and 39 males), all 80 years old, were investigated in a community-based study. None of the investigated subjects was being treated for diabetes mellitus and none of the women had oestrogen replacement. methods Levels of testosterone, oestradiol, SHBG, IGF-I, GHBP, glucose, insulin and leptin were analysed. Body composition was measured with bioimpedance analysis (BIA). results As in younger age groups, serum leptin, the ratio leptin/kilogram fat mass and serum GHBP were higher in the women (all, P 0·1). Leptin correlated to kilogram fat mass in both women (r = 0·55, P 0·2). Insulin and leptin were significantly associated with GHBP, both in women (r = 0·48, P < 0·001 and r = 0·43, P = 0·001, respectively) and in men (r = 0·40, P = 0·01 and r = 0·34, P = 0·03, respectively). conclusions Although the 80-year-old men had higher oestradiol levels than the women, the women had higher levels of leptin and GHBP. There were no correlations between sex hormones and leptin and GHBP, which indicates that the gender differences are not caused by sex hormones in old age. In contrast to studies in younger subjects, GHBP did not correlate to fat mass in the investigated 80-year-old men and women. In the older subjects investigated, as in younger subjects, GHBP was significantly correlated with leptin and insulin

    Chronic Hyperinsulinaemic Hypoglycaemia in Rats Is Accompanied by Increased Body Weight, Hyperleptinaemia, and Decreased Neuronal Glucose Transporter Levels in the Brain

    Get PDF
    The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30–50% (4–6 mM versus 7–9 mM in controls). The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain neuronal glucose transporter were decreased, whereas levels of lipid peroxidation products were unchanged. Discontinued infusion was followed by transient systemic hyperglycaemia and decreased food consumption and body weight. After 4 weeks, plasma levels of lipid peroxidation products were increased, possibly as a consequence of hyperglycaemia-induced oxidative stress. The present data suggests that chronic moderate hyperinsulinaemic hypoglycaemia causes increased body weight and hyperleptinaemia. This is accompanied by decreased neuronal glucose transporter levels, which may be leptin-induced
    • …
    corecore