229 research outputs found

    Optimizations of Pt/SiC and W/Si multilayers for the Nuclear Spectroscopic Telescope Array

    Get PDF
    The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W/Si multilayers to provide a broad band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure developed for gazing incidence optics, which averages the effective area over the energy range, and combines an energy weighting function with an angular weighting function to control the shape of the desired effective area. The NuSTAR multilayers are depth graded with a power-law, d_i = a/(b + i)^c, and we optimize over the total number of bi-layers, N, c, and the maximum bi-layer thickness, d_(max). The result is a 10 mirror group design optimized for a flat even energy response both on and off-axis

    Design-by-analogy: experimental evaluation of a functional analogy search methodology for concept generation improvement

    Get PDF
    Design-by-analogy is a growing field of study and practice, due to its power to augment and extend traditional concept generation methods by expanding the set of generated ideas using similarity relationships from solutions to analogous problems. This paper presents the results of experimentally testing a new method for extracting functional analogies from general data sources, such as patent databases, to assist designers in systematically seeking and identifying analogies. In summary, the approach produces significantly improved results on the novelty of solutions generated and no significant change in the total quantity of solutions generated. Computationally, this design-by-analogy facilitation methodology uses a novel functional vector space representation to quantify the functional similarity between represented design problems and, in this case, patent descriptions of products. The mapping of the patents into the functional analogous words enables the generation of functionally relevant novel ideas that can be customized in various ways. Overall, this approach provides functionally relevant novel sources of design-by-analogy inspiration to designers and design teams.SUTD-MIT International Design Centre (IDC)National Science Foundation (U.S.) (Grant Numbers CMMI-0855326, CMMI-0855510, and CMMI-08552930

    Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search

    Get PDF
    Design-by-analogy is a powerful approach to augment traditional concept generation methods by expanding the set of generated ideas using similarity relationships from solutions to analogous problems. While the concept of design-by-analogy has been known for some time, few actual methods and tools exist to assist designers in systematically seeking and identifying analogies from general data sources, databases, or repositories, such as patent databases. A new method for extracting functional analogies from data sources has been developed to provide this capability, here based on a functional basis rather than form or conflict descriptions. Building on past research, we utilize a functional vector space model (VSM) to quantify analogous similarity of an idea's functionality. We quantitatively evaluate the functional similarity between represented design problems and, in this case, patent descriptions of products. We also develop document parsing algorithms to reduce text descriptions of the data sources down to the key functions, for use in the functional similarity analysis and functional vector space modeling. To do this, we apply Zipf's law on word count order reduction to reduce the words within the documents down to the applicable functionally critical terms, thus providing a mapping process for function based search. The reduction of a document into functional analogous words enables the matching to novel ideas that are functionally similar, which can be customized various ways. This approach thereby provides relevant sources of design-by-analogy inspiration. As a verification of the approach, two original design problem case studies illustrate the distance range of analogical solutions that can be extracted. This range extends from very near-field, literal solutions to far-field cross-domain analogies.National Science Foundation (U.S.) (Grant CMMI-0855326)National Science Foundation (U.S.) (Grant CMMI-0855510)National Science Foundation (U.S.) (Grant CMMI-0855293)SUTD-MIT International Design Centre (IDC

    Facilitating Design-by-Analogy: Development of a Complete Functional Vocabulary and Functional Vector Approach to Analogical Search

    Get PDF
    Design-by-analogy is an effective approach to innovative concept generation, but can be elusive at times due to the fact that few methods and tools exist to assist designers in systematically seeking and identifying analogies from general data sources, databases, or repositories, such as patent databases. A new method for extracting analogies from data sources has been developed to provide this capability. Building on past research, we utilize a functional vector space model to quantify analogous similarity between a design problem and the data source of potential analogies. We quantitatively evaluate the functional similarity between represented design problems and, in this case, patent descriptions of products. We develop a complete functional vocabulary to map the patent database to applicable functionally critical terms, using document parsing algorithms to reduce text descriptions of the data sources down to the key functions, and applying Zipf’s law on word count order reduction to reduce the words within the documents. The reduction of a document (in this case a patent) into functional analogous words enables the matching to novel ideas that are functionally similar, which can be customized in various ways. This approach thereby provides relevant sources of design-by-analogy inspiration. Although our implementation of the technique focuses on functional descriptions of patents and the mapping of these functions to those of the design problem, resulting in a set of analogies, we believe that this technique is applicable to other analogy data sources as well. As a verification of the approach, an original design problem for an automated window washer illustrates the distance range of analogical solutions that can be extracted, extending from very near-field, literal solutions to far-field cross-domain analogies. Finally, a comparison with a current patent search tool is performed to draw a contrast to the status quo and evaluate the effectiveness of this work.National Science Foundation (U.S.) (grant number CMMI-0855510)National Science Foundation (U.S.) (grant number CMMI-0855326)National Science Foundation (U.S.) (grant number CMMI-0855293)SUTD-MIT International Design Centre (IDC

    Cross-talk between adherens junctions and desmosomes depends on plakoglobin

    Get PDF
    Squamous epithelial cells have both adherens junctions and desmosomes. The ability of these cells to organize the desmosomal proteins into a functional structure depends upon their ability first to organize an adherens junction. Since the adherens junction and the desmosome are separate structures with different molecular make up, it is not immediately obvious why formation of an adherens junction is a prerequisite for the formation of a desmosome. The adherens junction is composed of a transmembrane classical cadherin (E-cadherin and/or P-cadherin in squamous epithelial cells) linked to either β-catenin or plakoglobin, which is linked to α-catenin, which is linked to the actin cytoskeleton. The desmosome is composed of transmembrane proteins of the broad cadherin family (desmogleins and desmocollins) that are linked to the intermediate filament cytoskeleton, presumably through plakoglobin and desmoplakin. To begin to study the role of adherens junctions in the assembly of desmosomes, we produced an epithelial cell line that does not express classical cadherins and hence is unable to organize desmosomes, even though it retains the requisite desmosomal components. Transfection of E-cadherin and/or P-cadherin into this cell line did not restore the ability to organize desmosomes; however, overexpression of plakoglobin, along with E- cadherin, did permit desmosome organization. These data suggest that plakoglobin, which is the only known common component to both adherens junctions and desmosomes, must be linked to E-cadherin in the adherens junction before the cell can begin to assemble desmosomal components at regions of cell-cell contact. Although adherens junctions can form in the absence of plakoglobin, making use only of β-catenin, such junctions cannot support the formation of desmosomes. Thus, we speculate that plakoglobin plays a signaling role in desmosome organization

    Coating of the HEFT telescope mirrors: method and results

    Get PDF
    We report on the coating of depth graded W/Si multilayers on the thermally slumped glass substrates for the HEFT flight telescopes. The coatings consists of several hundred bilayers in an optimized graded power law design with stringent requirements on uniformity and interfacial roughness. We present the details of the planar magnetron sputtering facility including the optimization of power, Ar pressure and collimating geometry which allows us to coat the several thousand mirror segments required for each telescope module on a time schedule consistent with the current HEFT balloon project as well as future hard X-ray satellite projects. Results are presented on the uniformity, interfacial roughness, and reflectivity and scatter at hard X-ray energies

    Decreased IL7Rα and TdT expression underlie the skewed immunoglobulin repertoire of human B-cell precursors from fetal origin

    Get PDF
    Newborns are unable to mount antibody responses towards certain antigens. This has been related to the restricted repertoire of immunoglobulin (Ig) genes of their B cells. The mechanisms underlying the restricted fetal Ig gene repertoire are currently unresolved. We here addressed this with detailed molecular and cellular analysis of human precursor-B cells from fetal liver, fetal bone marrow (BM), and pediatric BM. In the absence of selection processes, fetal B-cell progenitors more frequently used proximal V, D and J genes in complete IGH gene rearrangements, despite normal Ig locus contraction. Fewer N-nucleotides were added in IGH gene rearrangements in the context of low TdT and XRCC4 expression. Moreover, fetal progenitor-B cells expressed lower levels of IL7Rα than their pediatric counterparts. Analysis of progenitor-B cells from IL7Rα-deficient patients revealed that TdT expression and N-nucleotides additions in Dh-Jh junctions were dependent on functional IL7Rα. Thus, IL7Rα affects TdT expression, and decreased expression of this receptor underlies at least in part the skewed Ig repertoire formation in fetal B-cell precursors. These new insights provide a better understanding of the formation of adaptive immunity in the developing fetus

    Production and calibration of the first HEFT hard x-ray optics module

    Get PDF
    Complete hard X-ray optics modules are currently being produced for the High Energy Focusing Telescope (HEFT), a balloon born mission that will observe a wide range of objects including young supernova remnants, active galactic nuclei, and galaxy clusters at energies between 20 and 70 keV. Large collecting areas are achieved by tightly nesting layers of grazing incidence mirrors in a conic approximation Wolter-I design. The segmented layers are made of thermally-formed glass substrates coated with depth-graded multilayer films for enhanced reflectivity. Our novel mounting technique involves constraining these mirror segments to successive layers of precisely machined graphite spacers. We report the production and calibration of the first HEFT optics module

    Molecular cloning and expression profiling of a chalcone synthase gene from hairy root cultures of Scutellaria viscidula Bunge

    Get PDF
    A cDNA encoding chalcone synthase (CHS), the key enzyme in flavonoid biosynthesis, was isolated from hairy root cultures of Scutellaria viscidula Bunge by rapid amplification of cDNA ends (RACE). The full-length cDNA of S. viscidula CHS, designated as Svchs (GenBank accession no. EU386767), was 1649 bp with a 1170 bp open reading frame (ORF) that corresponded to a deduced protein of 390 amino acid residues, a calculated molecular mass of 42.56 kDa and a theoretical isoelectric point (pI) of 5.79. Multiple sequence alignments showed that SvCHS shared high homology with CHS from other plants. Functional analysis in silico indicated that SvCHS was a hydrophilic protein most likely associated with intermediate metabolism. The active sites of the malonyl-CoA binding motif, coumaroyl pocket and cyclization pocket in CHS of Medicago sativa were also found in SvCHS. Molecular modeling indicated that the secondary structure of SvCHS contained mainly α-helixes and random coils. Phylogenetic analysis showed that SvCHS was most closely related to CHS from Scutellaria baicalensis. In agreement with its function as an elicitor-responsive gene, the expression of Svchs was induced and coordinated by methyl jasmonate. To our knowledge, this is the first report to describe the isolation and expression of a gene from S. viscidula
    • …
    corecore