3,331 research outputs found

    Identification of proteins in the postsynaptic density fraction by mass spectrometry

    Get PDF
    Our understanding of the organization of postsynaptic signaling systems at excitatory synapses has been aided by the identification of proteins in the postsynaptic density (PSD) fraction, a subcellular fraction enriched in structures with the morphology of PSDs. In this study, we have completed the identification of most major proteins in the PSD fraction with the use of an analytical method based on mass spectrometry coupled with searching of the protein sequence databases. At least one protein in each of 26 prominent protein bands from the PSD fraction has now been identified. We found 7 proteins not previously known to be constituents of the PSD fraction and 24 that had previously been associated with the PSD by other methods. The newly identified proteins include the heavy chain of myosin-Va (dilute myosin), a motor protein thought to be involved in vesicle trafficking, and the mammalian homolog of the yeast septin protein cdc10, which is important for bud formation in yeast. Both myosin-Va and cdc10 are threefold to fivefold enriched in the PSD fraction over brain homogenates. Immunocytochemical localization of myosin-Va in cultured hippocampal neurons shows that it partially colocalizes with PSD-95 at synapses and is also diffusely localized in cell bodies, dendrites, and axons. Cdc10 has a punctate distribution in cell bodies and dendrites, with some of the puncta colocalizing with PSD-95. The results support a role for myosin-Va in transport of materials into spines and for septins in the formation or maintenance of spines

    Fish schooling as a basis for vertical axis wind turbine farm design

    Get PDF
    Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the high power coefficient (mechanical power output divided by the power of the free-stream air through the turbine cross-sectional area) of an isolated turbine. However when in close proximity to neighbouring turbines, HAWTs suffer from a reduced power coefficient. In contrast, previous research on vertical axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience only small decreases (or even increases) in an individual turbine's power coefficient when placed in close proximity to neighbours, thus yielding much higher power outputs for a given area of land. A potential flow model of inter-VAWT interactions is developed to investigate the effect of changes in VAWT spatial arrangement on the array performance coefficient, which compares the expected average power coefficient of turbines in an array to a spatially-isolated turbine. A geometric arrangement based on the configuration of shed vortices in the wake of schooling fish is shown to significantly increase the array performance coefficient based upon an array of 16x16 wind turbines. Results suggest increases in power output of over one order of magnitude for a given area of land as compared to HAWTs.Comment: Submitted for publication in BioInspiration and Biomimetics. Note: The technology described in this paper is protected under both US and international pending patents filed by the California Institute of Technolog

    Optimal concentrations in transport systems

    Get PDF
    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration c[subscript opt] in these systems. The model further suggests that the impedance at the optimum concentration μ[subscript opt] may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ[subscript 0] as μ[subscript opt]∼2[superscript α]μ[subscript 0], where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow.National Science Foundation (U.S.) (Grant 1021779)National Science Foundation (U.S.) (Grant DMS-0907955)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Grant DMR-0820484

    The metabolic enzyme CTP synthase forms cytoskeletal filaments

    Get PDF
    Filament-forming cytoskeletal proteins are essential for the structure and organization of all cells. Bacterial homologues of the major eukaryotic cytoskeletal families have now been discovered, but studies suggest that yet more remain to be identified. We demonstrate that the metabolic enzyme CTP synthase (CtpS) forms filaments in Caulobacter crescentus. CtpS is bifunctional, as the filaments it forms regulate the curvature of C. crescentus cells independently of its catalytic function. The morphogenic role of CtpS requires its functional interaction with the intermediate filament, crescentin (CreS). Interestingly, the Escherichia coli CtpS homologue also forms filaments both in vivo and in vitro, suggesting that CtpS polymerization may be widely conserved. E. coli CtpS can replace the enzymatic and morphogenic functions of C. crescentus CtpS, indicating that C. crescentus has adapted a conserved filament-forming protein for a secondary role. These results implicate CtpS as a novel bifunctional member of the bacterial cytoskeleton and suggest that localization and polymerization may be important properties of metabolic enzymes

    Neutral Evolution as Diffusion in phenotype space: reproduction with mutation but without selection

    Full text link
    The process of `Evolutionary Diffusion', i.e. reproduction with local mutation but without selection in a biological population, resembles standard Diffusion in many ways. However, Evolutionary Diffusion allows the formation of local peaks with a characteristic width that undergo drift, even in the infinite population limit. We analytically calculate the mean peak width and the effective random walk step size, and obtain the distribution of the peak width which has a power law tail. We find that independent local mutations act as a diffusion of interacting particles with increased stepsize.Comment: 4 pages, 2 figures. Paper now representative of published articl

    One-loop Quantum Gravity in Schwarzschild Spacetime

    Get PDF
    The quantum theory of linearized perturbations of the gravitational field of a Schwarzschild black hole is presented. The fundamental operators are seen to be the perturbed Weyl scalars Ψ˙0\dot\Psi_0 and Ψ˙4\dot\Psi_4 associated with the Newman-Penrose description of the classical theory. Formulae are obtained for the expectation values of the modulus squared of these operators in the Boulware, Unruh and Hartle-Hawking quantum states. Differences between the renormalized expectation values of both Ψ˙02\bigl| \dot\Psi_0 \bigr|^2 and Ψ˙42\bigl| \dot\Psi_4 \bigr|^2 in the three quantum states are evaluated numerically.Comment: 39 pages, 11 Postscript figures, using revte
    corecore