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Many biological and man-made systems rely on transport systems for the distribution of material,
for example matter and energy. Material transfer in these systems is determined by the flow rate and
the concentration of material. While the most concentrated solutions offer the greatest potential
in terms of material transfer, impedance typically increases with concentration, thus making them
the most difficult to transport. We develop a general framework for describing systems for which
impedance increases with concentration, and consider material flow in four different natural systems:
blood flow in vertebrates, sugar transport in vascular plants, and two modes of nectar drinking in
birds and insects. The model provides a simple method for determining the optimum concentration
copt in these systems. The model further suggests that the impedance at the optimum concentration
µopt may be expressed in terms of the impedance of the pure (c = 0) carrier medium µ0 as µopt ∼
2αµ0, where the power α is prescribed by the specific flow constraints, for example, constant pressure
for blood flow (α = 1) or constant work rate for certain nectar drinking insects (α = 6). Comparing
the model predictions to experimental data from more than 100 animal and plant species, we find
that the simple model rationalizes the observed concentrations and impedances. The model provides
a universal framework for studying flows impeded by concentration, and provides insights into
optimization in engineered systems, such as traffic flow.

I. INTRODUCTION

Transport systems are ubiquitous in nature and tech-
nology. Whether biological such as the vascular systems
of plants and animals or engineered such as man-made
pipes, roads, electrical grids, and the internet, they serve
to move matter, energy, or information from one place to
another. Due to the cost of constructing and maintain-
ing redundant channels, it is advantageous for biological
transport systems to distribute matter efficiently [1, 2].
Oxygen transport in vertebrates [3, 4], sugar transport
in plants [5], and drinking strategies of many animals
[6, 7] are known to be optimized for efficient transport of
energy and material. Engineered systems must likewise
be cost-effective and able to provide efficient transport
under a variety of conditions; for example, considerable
resources are spent annually to ease traffic congestion.

In our examination of transport systems, we consider
material flow in four different natural systems: blood
flow in vertebrates, sugar transport in vascular plants,
and two modes of nectar drinking in birds and insects.
A common feature of these and other transport systems
is that the flow impedance depends on concentration.
While the most concentrated solutions offer the great-
est potential in terms of material transfer, the increase
of impedance with concentration also makes them the
most difficult to transport. Additionally, most transport
systems are subject to a set of limiting constraints. For
example, nectar feeders are typically constrained by a
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constant work rate, which in turn is a function of flow
impedance and hence concentration [7–9]. These trans-
port systems may thus be characterized in terms of an
optimization problem subject to appropriate constraints.
This approach has been used to rationalize observed con-
centrations in a wide range of natural systems [4, 8–10].
For example, the observed volume fraction of erythro-
cytes (red blood cells), typical ∼ 40 %− 50 % in humans,
has been shown to maximize oxygen transport [4, 10].
With the widespread use of bio-inspired design in the
development of novel engineered systems, it seems likely
that man-made transport systems such as roads or the
electrical grid may benefit from improved understanding
of natural transport systems.

We here develop a general framework for determin-
ing the concentration that maximizes material transfer in
transport systems. By drawing on a number of natural
examples – both new and derived from the biology liter-
ature – we show how these can be treated within a single
framework that provides new insight into the efficiency of
transport systems. We compare our model predictions to
experimental data from more than 100 animal and plant
species collected from the literature. Finally, we show
that similar optimization criteria may be applied to en-
gineered systems, and consider traffic flow in the context
of our new framework.

II. GENERAL FORMULATION

We consider systems in which the material transfer rate
(material flow) J can be expressed as the product of a
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volumetric flow rate (volume flow) Q and a concentration
of material c

J = Qc (1)

We express the volume flow as Q = Xf/µ where X is
a constant geometric factor, f quantifies the mechanism
driving the flow, and µ characterizes the impedance. The
material flow in Eq. (1) can be expressed as

J = X
f(c)

µ(c)
c (2)

where f and µ can depend on c. We now seek the optimal
concentration c = copt that maximizes J in Eq. (2) sub-
ject to a set of constraints; constant driving force f = f0

or constant work rate W ∼ Qf ∼ f2/µ. We therefore
consider constraints of the form f ∼ µγ , where γ = 0
corresponds to constant driving force and γ = 1/2 to
constant work rate when f depends on µ. Other values
of γ are possible if there is a direct coupling between
the driving force and impedance; for example, γ = 5/6
for bees that use viscous dipping to drink nectar (see
Sec. III D).

Although we may have limited knowledge of the exact
functional form of the concentration-dependent material
flow J(c) in Eq. (2), two general statements can be made.
First, we expect J to be proportional to the concentra-
tion c at low concentrations and to approach zero with
the concentration, i.e. J(c) ∝ c when c � copt. Sec-
ond, we are concerned with situations where the system
impedance increases with concentration, and J increases
monotonically up to a maximum value J(copt). To de-
scribe the system, we therefore propose the first order
governing equation

∂J∗

∂c∗
= A−Bc∗ (3)

where J∗ = J(c)/J(copt) and c∗ = c/copt is the normal-
ized material flow and concentration, respectively. A and
B are parameters which are determined by the boundary
conditions: J∗(0) = 0, J∗(1) = 1, and ∂J∗/∂c∗|c∗=1 = 0.
This leads to

J∗ = c∗(2− c∗) (4)

While Eq. (4) does not reveal the absolute value of the
optimum concentration copt, it does contain information
concerning the impedance at the optimum concentration
µ(copt). By expressing the constraint as f ∝ µγ , we find
from Eq. (2) that the normalized flux J∗ = J(c)/J(copt)
can be written as

J∗ =
µ(c)γ

µ(copt)γ
µ(copt)

µ(c)

c

copt
=

c∗

(µ∗)1−γ (5)

By using Eq. (4), the normalized impedance µ∗ =
µ(c)/µ(copt) may be expressed as

µ∗ =

(
1

2− c∗

)1/(1−γ)

(6)

It follows that the impedance at the optimum concentra-
tion is

µ(copt) = 2αµ(0) (7)

where the power α = 1/(1− γ) = log2(µ(copt)/µ(0)) and
µ(0) is the impedance at zero concentration.

Eqns. (4), (6), and (7) provide a general framework for
analyzing optimization of concentration impeded mate-
rial flow in biological and engineered systems. To test
the quantitative predictions of the theory we proceed
in Sec. III by considering a series of biological examples
where the flux J can be optimized along the lines out-
lined above. In Sec. IV, we apply our model to traffic
flow. Finally, in Sec. V, we consider universal properties
of concentration impeded material transport systems.

III. BIOLOGICAL TRANSPORT SYSTEMS

A. Nectar drinking from a tube

Perhaps the simplest situation in which we may apply
Eq. (2) is drinking from a cylindrical tube. Many insects
and birds such as butterflies and hummingbirds [7] feed
on floral nectar, an aqueous solution of sugars, through
tubes formed from probosci or tongues. Quick energy
ingestion is advantageous for nectar feeders owing to the
threat of predation. While the sweetest nectar offers the
greatest energetic rewards, the increase of viscosity with
sugar concentration also makes the sweetest nectar the
most difficult to transport [14]. An optimal concentration
may thus be sought for maximizing energy uptake rate.

Two different suction mechanisms are typically used
by nectar feeders: active suction and capillary suction
[7–9, 14]. Active suction feeders such as butterflies use
muscle contraction to suck nectar through their roughly
cylindrical probosci. In the limit of low Reynolds number
Hagen-Poiseuille flow, the nectar mass flow rate Js can
be expressed as

Js = ρc̄
πa4

8η(c̄)l
∆p (8)

where a is the radius and l the length of the proboscus,
c̄ is the wt/wt sugar concentration, η the viscosity (see
Appendix A), ρ the density of the nectar solution, and
∆p the pressure difference generated by muscular con-
traction. The manner in which biological constraints
determined the dependence of the pressure ∆p on nec-
tar viscosity has been treated elsewhere [8, 9]. Ac-
tive suction feeders are typically constrained by constant
work rate W = Q∆p = πa4/(8ηl)∆p2, so the pres-
sure ∆p = (8Wl/(πa4))1/2η1/2 depends on viscosity and
hence concentration. Comparing the nectar flow rate in
Eq. (8) to the general expression in (2), we find that the
impedance corresponds to the viscosity of the sugar so-
lution µ = η, the concentration to c = ρc̄, the geometric
factor to X = πa4/(8l), and the driving mechanism to
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(a) Nectar drinking by active/capillary suction
(butterflies / hummingbirds)

(b) Blood flow in vertebrates

(c) Sugar transport in plants (d) Nectar drinking by viscous dipping (bees)

~

FIG. 1. Optimal concentrations in biological transport systems. (a) Drinking from a tube. Histogram showing distribution of
observed sugar concentrations that maximizes nectar uptake for 16 bird and insect species that use muscular contractions or
surface tension to feed through cylindrical tubes [9, 11]. Normalized sugar mass flow Js/Js,max (solid line, Eqns. (8) and (9))
and nectar viscosity µ/µ0 (dashed line, data from [12]) are plotted as a function of nectar sugar concentration c̄. Mass flow is
predicted to be maximum when c̄opt = 35 %, in good agreement with the observed average nectar concentration (37 %). (b)
Blood flow. Histogram showing distribution of observed red blood cell concentrations (hematocrit) from 57 vertebrate species
[4]. Normalized oxygen flow Jr/Jr,max (solid line, Eq. (10)) and blood viscosity µ/µ0 (dashed line, see Appendix B) are plotted
as a function of hematocrit c̃. Flow is predicted to be maximum when c̃opt = 39 %, in good agreement with the observed
average hematocrit (40 %). (c) Sugar transport in plants. Histogram showing distribution of observed sugar concentrations
from 28 plant species that use active sugar loading [13]. Normalized sugar flow Jp/Jp,max (solid line, Eq. (11)) and sap viscosity
µ/µ0 (dashed line, data from [12]) are plotted as a function of phloem sugar concentration c̄. Mass flow is predicted to be at a
maximum when c̄opt = 24 %, in good agreement with the observed average sugar concentration (22 %). (d) Nectar drinking by
viscous dipping. Histogram showing distribution of observed sugar concentrations that maximizes nectar uptake for 6 insect
species that use viscous dipping [9, 11]. Normalized sugar mass flow Jv/Jv,max (solid line) and nectar viscosity µ/µ0 (dashed
line, data from [12]) are plotted as a function of nectar sugar concentration c̄. Mass flow is predicted to be at a maximum when
c̄opt = 57 %, in good agreement with the observed average nectar concentration (55 %). In (a)-(d), the numbers given above
the bins indicate the percentage of species in the bin. The experimental data are available in the Electronic Supplementary
Material.
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TABLE I. Parameters describing the material flow J = Qc = Xfc/µ (see Eq. (2)) for each of the systems considered. See
Appendices A and B for details on the viscosity η of blood, nectar and phloem sap.

System
Geometry Driving force Concentration Impedance

Constraint
X f c µ

Nectar drinking
πa4(8l)−1 ∆p ρc̄ η

Const. work rate W = Q∆p

(Active suction) f ∝ µ1/2

Nectar drinking
πa3 (σηT )1/2(T + T0)−1(2a)−1/2 ρc̄ η

Cyclic suction period T + T0

(Capillary suction) f ∝ µ1/2

Blood flow
πa4(8l)−1 ∆p c̃ η

Const. pressure f0 = ∆p
in vertebrates f ∝ µ0

Sugar transport
πa4(8l)−1 ∆p ρc̄ η

Const. pressure f0 = ∆p
in plants f ∝ µ0

Nectar drinking
2πa3 ηuea−2 ρc̄ η

Const. work rate W = ηu2l

(Viscous dipping) f ∝ µ5/6

Traffic flow
N C ρ/ρm ln(c0/c)

−1 Const. optimum speed f0 = C
(Greenberg) f ∝ µ0

Traffic flow
N vmax ρ/ρm tanh( 1−ρL

ρs )−1 Const. speed limit f0 = vmax

(BHN) f ∝ µ0

the pressure, f = ∆p. We can thus express the constraint
as f = (8Wl/(πa4))1/2µ1/2 (see Table I).

Capillary suction feeders such as hummingbirds use
surface tension to draw nectar along their tongue, dur-
ing repeated cycles of tongue insertion and retraction
[7, 9]. If the duration of a cyclic motion is the sum of
the nectar loading time T and unloading time T0, the
average nectar mass flow rate Js can be expressed as
Js = ρc̄πa2l(T )/(T + T0) where πa2l(T ) is the time-
dependent nectar volume extracted during the loading.
In the loading phase the volumetric flow rate is given
by πa2(dl/dt) = πa4∆p/(8ηl), where ∆p = 2σ/a is the
capillary pressure. The solution with initial condition
l(0) = 0 is given by l(t) = (aσt/(2η))1/2, which depends
explicitly on viscosity and hence concentration. The av-
erage nectar mass flow rate Js can be expressed as

Js = ρc̄
πa3

η(c̄)

(
ση(c̄)

2a

T

(T + T0)2

)1/2

(9)

By comparing the nectar flow rate in Eq. (9) to the
general expression in Eq. (2), we find that X = πa3,

f =
(
σηT/(2a(T + T0)2)

)1/2
and µ = η. If T/(T + T0)2

is assumed to be independent of viscosity [15], we find a
relation between driving force and impedance: f ∝ µ1/2

(see Table I).
For both active and capillary suction we find that f ∝

µ1/2 (i.e. γ = 1/2) and the optimal concentration c̄opt

can therefore be found by maximizing c/µ1/2. For nectar
sugar solutions, we therefore predict that c̄opt = 35 %
wt/wt and µ(c̄opt) = 4µ0 (i.e. α = 2 in (7)). This is in
good agreement with experimental data on 16 butterfly
and hummingbird species (see Fig. 1(a) and Table II),
where optimal concentrations in the range 30 % − 45 %
are reported.

B. Blood flow in vertebrates

Another biological flow problem that can be analyzed
within our framework is oxygen and nutrient transport
within the cardiovascular system of vertebrate animals.
Here, red blood cells transport oxygen between the lungs
and distal parts of the organism. The cells are suspended
in blood plasma, which primarily consists of water [16].
Red blood cells typically measure 10 µm in diameter [17],
and the blood’s bulk viscosity increases with the hemat-
ocrit c̃, the volume concentration of red blood cells (see
Appendix B). While blood with the highest hematocrit
is the most oxygen rich, the increase of viscosity with the
hematocrit also makes such blood the most difficult to
transport. Accordingly, an optimal hematocrit may be
sought for maximizing oxygen transport.

In the limit of low Reynolds number Hagen-Poiseuille
flow, the red blood cell volume flow rate Jr in vessels
larger than 1 mm can be expressed as

Jr = c̃
πa4

8η(c̄)l
∆p (10)

where a and l are the radius and length of the blood ves-
sel, η the blood viscosity (see Appendix B), and ∆p the
pressure difference generated by the heart. The diastolic
pressure is of the order of 10 kPa for most animals [18],
but the pressure difference associated with flow in large
vessels is small; most of the pressure drop in blood flow
occurs in vessels with size comparable to red blood cells.
The dependence of blood pressure on the hematocrit is,
however, negligible [4], i.e. ∆p does not depend on c̃. Al-
though blood viscosity η generally depends on the shear
rate, this dependence is weak for typical blood condi-
tions, specifically in vessels with diameters larger than 1
mm and shear rates greater than 50 s−1 [16]. Comparing
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the blood flow rate in Eq. (10) to the general expression
in Eq. (2) we find that c = c̃, µ = η, X = πa4/(8l) and
f = ∆p. We express the constraint as that of constant
pressure f = f0 = ∆p (see Table I).

For blood flow we thus find that Xf ∝ µ0 (i.e. γ = 0)
and the optimum concentration c̃opt can be found by
maximizing c/µ. We therefore predict that c̃opt = 39 %
vol/vol and µ(c̃opt) = 2µ0 (i.e. α = 1, in (7)), in good
agreement with experimental data from 57 species ob-
served throughout the animal kingdom (see Fig. 1(b) and
Table II). We attribute the significant variation in the
observed concentrations in part to the complex interac-
tions between red blood cells and flow in smaller vessels,
which we do not consider in our model. An important
feature of the red blood cell volume flow rate Jr is also
that it varies by less than 20 % over the range of con-
centrations from c = 20 % to c = 60 %, suggesting that
concentrations in this interval are acceptable given ad-
ditional biological constraints. For example, also note
that for some diving mammals (e.g. Weddell seals and
whales), oxygen storage in the blood may also be an im-
portant factor, resulting in a higher hematocrit (up to
63 %) [4]. It is also likely that lack of thermoregula-
tion may explain why poikilothermic animals (e.g. the
rainbow trout) has a lower hematocrit value (23 %) than
the average, likely due to thermally induced variations in
blood viscosity [19].

C. Sugar transport in plants

Plants, like animals, rely on vascular systems for dis-
tribution of energy and nutrients. Energy distribution in
plants takes place in the phloem vascular system. Here,
an aqueous solution of sugars, amino acids, proteins, ions,
and signaling molecules flows through a series of narrow
elongated cylindrical cells, known as sieve tube elements,
that lie end-to-end forming a microfluidic distribution
system spanning the entire length of the plant. The flow
is driven by differences in chemical potential between dis-
tal parts of the plant [20]. While phloem sap with high
sugar concentration has the greatest potential for energy
transfer, the increase of viscosity with sugar concentra-
tion makes it the most difficult to transport. Accord-
ingly, an optimal concentration may again be sought for
maximizing energy flow.

Assuming low Reynolds number Hagen-Poiseuille flow,
the phloem sugar mass flow rate Jp can be expressed as

Jp = ρc̄
πa4

8η(c̄)l
∆p (11)

where a is the radius of the phloem sieve tube (a '
10µm), l the length of the plant, c̄ the sugar concen-
tration, η the phloem sap viscosity, and ∆p the pressure
difference driving the flow. By comparing the sugar flow
rate (11) to the general expression in (2), we find that
µ = η, c = c̄ρ, X = πa4/(8l) and f = ∆p. We express

the constraint as that of constant pressure f = f0 = ∆p
(see Table I).

For sugar transport in plants we thus find that Xf ∝
µ0 (i.e. γ = 0) and the optimum concentration c̄opt can
therefore be found by maximizing c/µ. We find that
c̄opt = 24 % wt/wt and µ(c̄opt) = 2µ0 (i.e. α = 1,
in (7)), in good agreement with experimental data (see
Fig. 1(c) and Table II). While sugar concentrations ob-
served in plants generally span a wide range, this analysis
provides a rational for the observation that plants that
use active sugar loading (data shown in Fig. 1(c)) typ-
ically have higher sugar concentration than plants that
use passive loading [13]. Active loaders expend metabolic
energy to increase the sugar concentration in the phloem
[21]. The process is driven by membrane transporters
and sugar polymerization and occurs against a sugar con-
centration gradient. However, in passive loading species,
sugars move into the phloem without the use of metabolic
energy by traveling down a concentration gradient from
sites of carbohydrate synthesis and/or storage to the
phloem [13]. We also note that plants with the highest
sugar concentrations are crop plants, for example potato
(50 %) and maize (40 %), suggesting that selection for
high crop yield tends to lead to increased sugar concen-
tration in the phloem sap [13].

D. Drinking by viscous dipping

So far, we have limited our attention to transport in
closed channels. However, it is straightforward to ex-
tend the problem to situations where free surfaces are
involved. Most bees whose tongues are solid rather than
hollow use a drinking style termed “viscous dipping” in
which the fluid is entrained by the tongue surface. The
average nectar volume entrained can be expressed by
Q ∼ 2πaeu, where a is the tongue radius, e the thick-
ness of the nectar layer on the tongue, and u the tongue
extraction speed. Based on Landau-Levich-Derjaguin
theory when the Reynolds number Re � 1 and Bond
number Bo � 1, the nectar film thickness is given by
e ∼ aCa2/3, where Ca = ηu/σ � 1 is the ratio of vis-
cous to capillary forces [22]. Since the fluid is entrained
on the tongue by viscous forces, we define the driving
force and geometric factor as f = ηue/a2 and X = 2πa3.
The movement of the tongue in the fluid requires power
W ∼ ηu2l to overcome the viscous drag, where l is the
immersed tongue length. Assuming a constant work rate
W for a given creature leads to the constraint on velocity
u ∼ (W/(ηl))1/2 which leads to f ∝ µ5/6 [9] (see Table I).

For viscous dipping, we find that f ∝ µ5/6 (i.e. γ =
5/6) and the optimum concentration c̄opt can therefore be

found by maximizing c/µ1/6. We find that copt = 57 %
wt/wt and µ(copt) = 64µ0 (i.e. α = 6, c.f. Eq. (7)).
This is in reasonable agreement with experimental data
on 6 bees species (see Fig. 1(d) and Table II), where op-
timal concentrations in the range 50 %− 60 % are found.
This may explain why the nectar concentration of flowers
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FIG. 2. Optimal vehicle concentration for maximizing traffic
flow. Grey dots show measured vehicle flow rate Jv plot-
ted as a function of vehicle concentration c = ρ/ρopt where
ρopt = 133 vehicles/km. The flow rate is normalized by
1483 vehicles/hour which corresponds to Jv(ρopt) = Jv,max
in Bando, Hasebe, and Nakayama’s (BHN) model [23]. His-
tograms show the states occupied by the system in the morn-
ing (green, 6-8AM) and evening (blue, 4-6PM) rush-hour traf-
fic. The data were collected by the Minnesota Department of
Transportation from a sensor on the westbound direction of
I-94 (Minneapolis, MN, USA) on Fridays (7, 14, 21, 28) in
September 2012 [24]. The predicted vehicle transport rate
Jv/Jv,max (thick solid black line: BHN model; thin solid red
line: Greenberg’s model) and traffic impedance µ/µ0 (dashed
line: BHN model) are plotted as a function of vehicle concen-
tration c. The experimental data are available in the Elec-
tronic Supplementary Material.

pollinated by bees is generally higher than that of those
pollinated by tube feeding butterflies and hummingbirds
[9].

IV. APPLICATIONS TO ENGINEERED
TRANSPORT SYSTEMS: TRAFFIC FLOW

We have thus far seen many qualitative similarities
between different biological flows. Although the de-
tailed physiological and physical mechanisms are differ-
ent, provided increased concentration leads to greater
impedance, we can rationalize the optimal concentra-
tions. An interesting question naturally arises. In which
engineered systems might one expect to observe similar
phenomena? It appears likely that most efficient com-
munication and transport systems will exhibit similar
features. Nevertheless, we limit our discussion to traf-
fic congestion on highways.

A measure of the efficiency of a given section of road
is the vehicle flow Jv, the number of vehicles passing a

given point per unit time [25–28]. Designers of road net-
works strive to maximize the vehicle flow which can be
expressed as Jv = ρv, where v is the speed of the individ-
ual vehicle and ρ the number of vehicles per unit length
of roadway. Generally, car speed v = v(ρ) is a decreas-
ing function of density ρ. At very low densities, where
inter-vehicle interaction is negligible, however, the speed
approaches the speed limit vmax and the vehicle flux is
proportional to density Jv ' ρvmax. At higher vehicle
densities, interaction between adjacent cars leads to flow
impedance and a significant reduction in the speed of in-
dividual vehicles, causing congestion and a net decrease
in the flux Jv. The vehicle interactions initially take the
form of synchronized flow, a form of congested traffic in
which each driver attempts to maintain a safe distance
from the neighboring cars. As the density increases, wide
moving jams form, that is, stop-and-go traffic in which
the vehicle flux approaches zero [25]. From these consid-
erations, one anticipates an optimal vehicle density ρopt

that maximizes the vehicle flux.

To estimate ρopt, we require v(ρ) which can be found
either empirically, or deduced from vehicle interaction
models. One of the simplest models that leads to a rea-
sonable expression for v(ρ) was proposed by Greenberg
[29], who treated traffic flow as a one-dimensional flow
of an ideal compressible gas. He assumed (i) that the
local speed is a function of density only v = v(ρ(x, t)),
(ii) that vehicles are conserved ∂ρ/∂t+ ∂Jv/∂x = 0, (iii)
that vehicle flow satisfies the Euler equation Dv/Dt =
−(1/ρ)∂p/∂x, and (iv) that traffic “pressure” is pro-
portional to density p = C2ρ. This leads to the re-
lation v(ρ) = C ln (ρmax/ρ) where ρmax is the density
at which traffic stops due to congestion. The vehicle
flow rate Jv = Cρ ln (ρmax/ρ) is at a maximum when
ρ = ρopt = ρmax/e, and the constant C = v(ρopt) is the
vehicle speed at the optimal concentration. Since vehi-
cles typically occupy 7.5 m in a totally congested flow
[25], we estimate that ρmax ' 133 vehicles/km. Green-
berg’s model overestimates the optimal density, predict-
ing ρopt = ρmax/e ∼ 50 vehicles/km, while the true val-
ues is known to be ∼ 20 vehicles/km. Nevertheless, the
vehicle flow rate Jv is qualitatively consistent with empir-
ical traffic data, see Fig. 2. The data is plotted as a func-
tion of vehicle concentration c = ρ/ρmax in Fig. 2 along
with Greenberg’s flow rate Jv, deduced using ρmax = 133
vehicles/km.

A shortcoming of Greenberg’s theoretical model is that
the vehicle speed v diverges when the car density is very
low. To ensure that v(ρ/ρmax → 0) = vmax and to ac-
count for other aspects of traffic flows, numerous other
models have been proposed [23, 25–28]. For example,
Bando, Hasebe, and Nakayama (BHN) [23] suggested
a traffic model in which the vehicle speed depends on
the distance from the car in front, ∆x. This leads to
v = vmax tanh(∆x/s), where s is a fixed length scale
determined by the road conditions. With a minimum
vehicle distance L = 7.5 m, we can express the den-
sity in terms of ∆x as ρ = 1/(L + ∆x). This leads to
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v(ρ) = vmax tanh[(1/ρ − L)/s], in which case the flow
rate Jv = vρ is optimized when ρ = 0.21ρmax = 28 vehi-
cles/km. With vmax = 120 km/h and s = 60 m, the BHN
model provides a better quantitative fit to the empirical
data than Greenberg’s model (see Fig. 2).

Comparing the Greenberg and BHN models of traffic
flow to the formulation introduced in Eq. (2), we see that
traffic flow can be treated in the same general framework
where

X = N, f = C = v(ρopt), µ = (ln ρmax/ρ)
−1

(12)

for Greenbergs model, and

X = N, f = vmax, µ = tanh

(
1− ρL
ρs

)−1

(13)

for the BHN model. In both cases, N is the number of
lanes.

Comparing traffic flow to the biological transport prob-
lems considered above, we find that the normalized
flux and impedance curves follow the same pattern (see
Fig. 2). While traffic flow can be treated in the same
framework as biological flows, it is important to note
that the congested highway (Fig. 2, data recorded from
4-6 PM) is very far from being optimized. This is pre-
sumably due to two main effects. First, the individual
vehicle operator attempts to minimize his or her own
travel time which does not necessarily optimize the over-
all vehicle flow Jv. Second, traffic flows are intrinsically
time dependent which leads to the formation of traveling
density waves and shocks [25–28].

V. UNIVERSAL PROPERTIES OF
TRANSPORT SYSTEMS

To compare characteristics of the particular biological
and man-made transport systems considered in Sec. III
and IV to the general formulation in Eqns. (4) and
(6), normalized material flow and impedance curces
are plotted in Fig. 3. Despite the complex depen-
dence of impedance on concentration (see Appendices A
and B), both the material flow J∗ and impedance µ∗

are adequately approximated by the simple forms given
in Eqns. (4) and (6). From (6), it follows that the
impedance at the optimum concentration is µopt = 2αµ0,
where µ0 is the impedance of the pure carrier medium
(with c = 0) and the power α is determined by the flow
constraints. In the cases of vascular transport in plants
and animals, the power α = 1, since there is no coupling
between the constant driving pressure (f) or the vascu-
lar geometry (X) and the impedance (µ). This suggests
that the optimum in material flow should occur when
the blood or phloem sap is twice as viscous as water, i.e.
ηopt = 2η0, in good agreement with observed values (see
Table II).

In transport systems that are constrained, for exam-
ple by constant work rate, α will generally be greater

TABLE II. Comparison between theoretical predictions (T)
and experimental observations (E) of the optimum concen-
tration copt, the optimum viscosity µopt and the exponent
α. Concentration units are % wt/wt for nectar drinking and
sugar transport in plants, % vol/vol for blood flow, and %
vehicle density/max vehicle density for traffic flow. The ex-
perimental data are available in the Electronic Supplementary
Material.

System
copt µopt/µ0 α

T E T E T E

Nectar drinking
35 36.9± 5.3 4 3.5− 7.4 2 1.8− 2.9

(Suction)

Blood flow
39 40.2± 8.6 2 2.2− 3.4 1 1.1− 1.8

in vertebrates

Sugar transport
24 21.8± 10.3 2 1.4− 3.6 1 0.5− 1.8

in plants

Nectar drinking
57 55.0± 4.1 64 17.5− 49.4 6 4.1− 5.6

(Viscous dipping)

Traffic flow
37 18 - - - -

(Greenberg)

Traffic flow
21 18 2 1.9 1 0.9

(BHN)

than unity, because of the coupling between flow and
impedance. The impedance at the optimum concentra-
tion µopt = 2αµ0, can therefore be significantly greater
than that of the carrier medium. This is most clearly seen
in the case of viscous dipping (Sec. III D), where the ob-
served nectar viscosity is up to 50 greater than that of
water, roughly consistent with the value (26 = 64) pre-
dicted by our simple model (see Table II).

These observations suggest that this general frame-
work may also provide rationale for the viscosities found
in other biological transport systems where efficient
transport is favored. Examples of systems with constant
forcing include mammals that drink whole milk (observed
viscosity: η ∼ 2η0 [30]), and in the macro-alga Chara
where streaming distributes the content of the cell cy-
tosol (observed viscosity: ∼ 3η0 [31]). Although detailed
studies of these systems are left for future consideration,
we note that both are roughly consistent with the pre-
dictions of our general theory with α = 1.

Comparing traffic flow to the biological transport prob-
lems considered, we find that the normalized flux and
impedance curves follow the same pattern (see Fig. 3
and Table II). Since the speed limit vmax, which is fixed
on a given road section, corresponds to the flow driving
mechanism in the BHN model, traffic flow is analogous
to vascular transport in animals and plants that operate
at constant pressure. Our model thus indicates that the
flow constraint does not couple to impedance, Xf ∝ µ0

(γ = 0, α = 1), and hence that the optimal impedance is
µopt = 2µ0. This is in rough accord with the BHN model
which yields µopt = 1.9µ0.
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FIG. 3. Universal properties of biological and engineered flows. (a) Normalized flow rate J∗ = J(c)/J(copt) plotted as a
function of normalized concentration c∗ = c/copt. The solid thick black line shows the prediction of Eq. (4). (b) Normalized
impedance µ∗ = µ(c)/µ(copt) plotted as a function of normalized concentration c∗. The solid and dashed thick black lines show
the predictions of Eq. (6). The inset indicates the dependence of (µ∗)1−γ on c∗.

VI. DISCUSSION AND CONCLUSION

We have seen many qualitative and quantitative sim-
ilarities between different natural and engineered trans-
port systems. Although the detailed mechanisms are dif-
ferent, key common features have allowed us to develop
a general framework. Provided impedance increases with
concentration, our model provides means of rationalizing
the optimal concentrations. Collecting data from more
than 100 plant and animal species, we have observed that
optimization of material flow appears to be a univer-
sal feature of biological transport systems. This deduc-
tion provides rational for the observation that the simple
model introduced in Sec. II collapses flow and impedance
curves for all the systems considered (Fig. 3), suggesting
a universal component to all natural transport systems.

Finally, we have shown that an interesting analogy
can be made between biological systems and self-driven
systems such as traffic flows. Here we find that the
impedance analogy is still valid, but that the system is far
from optimized due to conflicting interests between indi-
viduals and the collective. The consideration of other
man-made transport systems, such as the electrical grid
or the internet, is left for future consideration.
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Appendix A: Viscosity and density of nectar and
phloem sap

Phloem sap and flower nectar consist of an aqueous
solution of sugars, amino acids, proteins, and other nu-
trients. Sugars, of which sucrose, fructose and glucose
are the most abundant types, constitute about 90 % of
the total solute mass [32]. To approximate the vis-
cosity η and density ρ of phloem sap and nectar, we
therefore used data from sucrose solutions of concentra-
tion c̄ obtained from [12]. Least square fits to sucrose
data yields the approximate expressions for viscosity η =
η0gn(c̄) = η0 exp

[
0.032 c̄− (0.012 c̄)2 + (0.023 c̄)3

]
and

density ρ = ρ0

(
1 + 0.0038c̄+ (0.0037 c̄)2 + (0.0033 c̄)3

)
.

We note that viscosity and density data from other sugar
types (glucose and fructose) are well approximated by the
fit, suggesting that the major determinant of viscosity is
the mass fraction c̄, and not the type of solute.

Appendix B: Viscosity of blood

Vertebrate blood is composed of blood cells suspended
in blood plasma, a liquid which consists mostly of water.
The viscosity of blood η depends primarily on the volume
concentration c̃ (hematocrit) of red blood cells, and on
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temperature [4, 19]. As demonstrated by Saito [33] and
Stark [4], blood viscosity is well described by the function
η/η0 = 1 + 2.5c̃/(1 − c̃), which for blood vessels with

diameters larger than 1 mm is consistent with empirical
data with less than 5% error for 0 < c̃ < 70% [34, 35]
(See Table S6 of the Electronic Supplementary Material).
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