3,359 research outputs found

    The Effect of Columnar Disorder on the Superconducting Transition of a Type-II Superconductor in Zero Applied Magnetic Field

    Full text link
    We investigate the effect of random columnar disorder on the superconducting phase transition of a type-II superconductor in zero applied magnetic field using numerical simulations of three dimensional XY and vortex loop models. We consider both an unscreened model, in which the bare magnetic penetration length is approximated as infinite, and a strongly screened model, in which the magnetic penetration length is of order the vortex core radius. We consider both equilibrium and dynamic critical exponents. We show that, as in the disorder free case, the equilibrium transitions of the unscreened and strongly screened models lie in the same universality class, however scaling is now anisotropic. We find for the correlation length exponent ν=1.2±0.1\nu=1.2\pm 0.1, and for the anisotropy exponent ζ=1.3±0.1\zeta=1.3\pm 0.1. We find different dynamic critical exponents for the unscreened and strongly screened models.Comment: 30 pages 12 ps figure

    Self-Organized Criticality model for Brain Plasticity

    Full text link
    Networks of living neurons exhibit an avalanche mode of activity, experimentally found in organotypic cultures. Here we present a model based on self-organized criticality and taking into account brain plasticity, which is able to reproduce the spectrum of electroencephalograms (EEG). The model consists in an electrical network with threshold firing and activity-dependent synapse strenghts. The system exhibits an avalanche activity power law distributed. The analysis of the power spectra of the electrical signal reproduces very robustly the power law behaviour with the exponent 0.8, experimentally measured in EEG spectra. The same value of the exponent is found on small-world lattices and for leaky neurons, indicating that universality holds for a wide class of brain models.Comment: 4 pages, 3 figure

    Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity

    Get PDF
    Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the frst detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the temporal shape of the nerve impulse. This work opens new ways towards implementing optical magnetometers as practical devices for medical diagnostics.Comment: Main text with figures, and methods and supplementary informatio

    Force fluctuation in a driven elastic chain

    Get PDF
    We study the dynamics of an elastic chain driven on a disordered substrate and analyze numerically the statistics of force fluctuations at the depinning transition. The probability distribution function of the amplitude of the slip events for small velocities is a power law with an exponent +AFwtau+AFw-tau depending on the driving velocity. This result is in qualitative agreement with experimental measurements performed on sliding elastic surfaces with macroscopic asperities. We explore the properties of the depinning transition as a function of the driving mode (i.e. constant force or constant velocity) and compute the force-velocity diagram using finite size scaling methods. The scaling exponents are in excellent agreement with the values expected in interface models and, contrary to previous studies, we found no difference in the exponents for periodic and disordered chains.Comment: 8 page

    Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice Coulomb gas

    Full text link
    We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent a(T)a(T) of the nonlinear current-voltage characteristic, VIa(T)+1V \sim I^{a(T)+1}. The determinations rely on both equilibrium and non-equilibrium simulations. We find good agreement between the different determinations, and our results also agree closely with experimental results for Hg-Xe thin film superconductors and for certain single crystal thin-film high temperature superconductors.Comment: late

    Monte Carlo calculation of the linear resistance of a three dimensional lattice Superconductor model in the London limit

    Full text link
    We have studied the linear resistance of a three dimensional lattice Superconductor model in the London limit London lattice model by Monte Carlo simulation of the vortex loop dynamics. We find excellent finite size scaling at the phase transition. We determine the dynamical exponent z=1.51z = 1.51 for the isotropic London lattice model.Comment: 4 pages, RevTeX with 3 postscript figures include

    Comparison of treatment with insulin degludec and glargine U100 in patients with type 1 diabetes prone to nocturnal severe hypoglycaemia:The HypoDeg randomized, controlled, open-label, crossover trial

    Get PDF
    AIM: To investigate whether the long‐acting insulin analogue insulin degludec compared with insulin glargine U100 reduces the risk of nocturnal symptomatic hypoglycaemia in patients with type 1 diabetes (T1D). METHODS: Adults with T1D and at least one episode of nocturnal severe hypoglycaemia during the last 2 years were included in a 2‐year prospective, randomized, open, multicentre, crossover trial. A total of 149 patients were randomized 1:1 to basal‐bolus therapy with insulin degludec and insulin aspart or insulin glargine U100 and insulin aspart. Each treatment period lasted 1 year and consisted of 3 months of run‐in or crossover followed by 9 months of maintenance. The primary endpoint was the number of blindly adjudicated nocturnal symptomatic hypoglycaemic episodes. Secondary endpoints included the occurrence of severe hypoglycaemia. We analysed all endpoints by intention‐to‐treat. RESULTS: Treatment with insulin degludec resulted in a 28% (95% CI: 9%‐43%; P = .02) relative rate reduction (RRR) of nocturnal symptomatic hypoglycaemia at level 1 (≤3.9 mmol/L), a 37% (95% CI: 16%‐53%; P = .002) RRR at level 2 (≤3.0 mmol/L), and a 35% (95% CI: 1%‐58%; P = .04) RRR in all‐day severe hypoglycaemia compared with insulin glargine U100. CONCLUSIONS: Patients with T1D prone to nocturnal severe hypoglycaemia have lower rates of nocturnal symptomatic hypoglycaemia and all‐day severe hypoglycaemia with insulin degludec compared with insulin glargine U100
    corecore