3,754 research outputs found

    The inequality of electoral participation in Europe and America and the politically integrative functions of the welfare state

    Get PDF
    Electoral turnout is shown to be higher and less socially skewed in member states of the enlarged European Union than in the United States. The differences in the levels of turnout can partly be related to differences in election procedures, but since the procedural rules provide similar incentives or disincentives to all social groups they cannot explain the much higher inequality of electoral participation in America. There is some evidence to sustain the notion that the higher inclusiveness of the West European welfare state fosters political integration and the equality of electoral participation. In line with this notion differences between Europe and America diminish considerably when the analysis is confined to the pensioner generation whose integration into welfare state schemes is largely similar on both sides of the Atlantic. --

    Direct simulation of liquid-gas-solid flow with a free surface lattice Boltzmann method

    Get PDF
    Direct numerical simulation of liquid-gas-solid flows is uncommon due to the considerable computational cost. As the grid spacing is determined by the smallest involved length scale, large grid sizes become necessary -- in particular if the bubble-particle aspect ratio is on the order of 10 or larger. Hence, it arises the question of both feasibility and reasonability. In this paper, we present a fully parallel, scalable method for direct numerical simulation of bubble-particle interaction at a size ratio of 1-2 orders of magnitude that makes simulations feasible on currently available super-computing resources. With the presented approach, simulations of bubbles in suspension columns consisting of more than 100000100\,000 fully resolved particles become possible. Furthermore, we demonstrate the significance of particle-resolved simulations by comparison to previous unresolved solutions. The results indicate that fully-resolved direct numerical simulation is indeed necessary to predict the flow structure of bubble-particle interaction problems correctly.Comment: submitted to International Journal of Computational Fluid Dynamic

    Advanced Methods for Real-time Metagenomic Analysis of Nanopore Sequencing Data

    Get PDF
    Whole shotgun metagenomics sequencing allows researchers to retrieve information about all organisms in a complex sample. This method enables microbiologists to detect pathogens in clinical samples, study the microbial diversity in various environments, and detect abundance differences of certain microbes under different living conditions. The emergence of nanopore sequencing has offered many new possibilities for clinical and environmental microbiologists. In particular, the portability of the small nanopore sequencing devices and the ability to selectively sequence only DNA from interesting organisms are expected to make a significant contribution to the field. However, both options require memory-efficient methods that perform real-time data analysis on commodity hardware like usual laptops. In this thesis, I present new methods for real-time analysis of nanopore sequencing data in a metagenomic context. These methods are based on optimized algorithmic approaches querying the sequenced data against large sets of reference sequences. The main goal of those contributions is to improve the sequencing and analysis of underrepresented organisms in complex metagenomic samples and enable this analysis in low-resource settings in the field. First, I introduce ReadBouncer as a new tool for nanopore adaptive sampling, which can reject uninteresting DNA molecules during the sequencing process. ReadBouncer improves read classification compared to other adaptive sampling tools and has fewer memory requirements. These improvements enable a higher enrichment of underrepresented sequences while performing adaptive sampling in the field. I further show that, besides host sequence removal and enrichment of low-abundant microbes, adaptive sampling can enrich underrepresented plasmid sequences in bacterial samples. These plasmids play a crucial role in the dissemination of antibiotic resistance genes. However, their characterization requires expensive and time-consuming lab protocols. I describe how adaptive sampling can be used as a cheap method for the enrichment of plasmids, which can make a significant contribution to the point-of-care sequencing of bacterial pathogens. Finally, I introduce a novel memory- and space-efficient algorithm for real-time taxonomic profiling of nanopore reads that was implemented in Taxor. It improves the taxonomic classification of nanopore reads compared to other taxonomic profiling tools and tremendously reduces the memory footprint. The resulting database index for thousands of microbial species is small enough to fit into the memory of a small laptop, enabling real-time metagenomics analysis of nanopore sequencing data with large reference databases in the field

    Tetra­aceto­nitrile­lithium tetra­iso­thio­cyanato­borate

    Get PDF
    The crystal structure of the title salt, [Li(CH3CN)4][B(NCS)4], is composed of discrete cations and anions. Both the Li and B atoms show a tetra­hedral coordination by four equal ligands. The aceto­nitrile and iso­thio­cyanate ligands are linear. The bond angles at the B atom are close to the ideal tetra­hedral value [108.92 (18)–109.94 (16)°], but the bond angles at the Li atom show larger deviations [106.15 (17)–113.70 (17)°]
    corecore