99 research outputs found

    Induced metamorphosis in crustacean y-larvae: Towards a solution to a 100-year-old riddle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The y-larva, a crustacean larval type first identified more than 100 years ago, has been found in marine plankton samples collected in the arctic, temperate and tropical regions of all oceans. The great species diversity found among y-larvae (we have identified more than 40 species at our study site alone) indicates that the adult organism may play a significant ecological role. However, despite intense efforts, the adult y-organism has never been identified, and nothing is therefore known about its biology.</p> <p>Results</p> <p>We have successfully and repeatedly induced metamorphosis of y-larvae into a novel, highly reduced juvenile stage by applying the crustacean molting hormone 20-HE. The new stage is slug-like, unsegmented and lacks both limbs and almost all other traits normally characterizing arthropods, but it is capable of vigorous peristaltic motions.</p> <p>Conclusion</p> <p>From our observations on live and preserved material we conclude that adult Facetotecta are endoparasitic in still to be identified marine hosts and with a juvenile stage that represents a remarkable convergence to that seen in parasitic barnacles (Crustacea Cirripedia Rhizocephala). From the distribution and abundance of facetotectan y-larvae in the world's oceans we furthermore suggest that these parasites are widespread and could play an important role in the marine environment.</p

    Towards a barnacle tree of life:integrating diverse phylogenetic efforts into a comprehensive hypothesis of thecostracan evolution

    Get PDF
    Barnacles and their allies (Thecostraca) are a biologically diverse, monophyletic crustacean group, which includes both intensely studied taxa, such as the acorn and stalked barnacles, as well as cryptic taxa, for example, Facetotecta. Recent efforts have clarified phylogenetic relationships in many different parts of the barnacle tree, but the outcomes of these phylogenetic studies have not yet been combined into a single hypothesis for all barnacles. In the present study, we applied a new “synthesis” tree approach to estimate the first working Barnacle Tree of Life. Using this approach, we integrated phylogenetic hypotheses from 27 studies, which did not necessarily include the same taxa or used the same characters, with hierarchical taxonomic information for all recognized species. This first synthesis tree contains 2,070 barnacle species and subspecies, including 239 barnacle species with phylogenetic information and 198 undescribed or unidentified species. The tree had 442 bifurcating nodes, indicating that 79.3% of all nodes are still unresolved. We found that the acorn and stalked barnacles, the Thoracica, and the parasitic Rhizocephala have the largest amount of published phylogenetic information. About half of the thecostracan families for which phylogenetic information was available were polyphyletic. We queried publicly available geographic occurrence databases for the group, gaining a sense of geographic gaps and hotspots in our phylogenetic knowledge. Phylogenetic information is especially lacking for deep sea and Arctic taxa, but even coastal species are not fully incorporated into phylogenetic studies.publishedVersio

    Metamorphosis in the Cirripede Crustacean Balanus amphitrite

    Get PDF
    Stalked and acorn barnacles (Cirripedia Thoracica) have a complex life cycle that includes a free-swimming nauplius larva, a cypris larva and a permanently attached sessile juvenile and adult barnacle. The barnacle cyprid is among the most highly specialized of marine invertebrate larvae and its settlement biology has been intensively studied. By contrast, surprisingly few papers have dealt with the critical series of metamorphic events from cementation of the cyprid to the substratum until the appearance of a suspension feeding juvenile. This metamorphosis is both ontogenetically complex and critical to the survival of the barnacle. Here we use video microscopy to present a timeline and description of morphological events from settled cyprid to juvenile barnacle in the model species Balanus amphitrite, representing an important step towards both a broader understanding of the settlement ecology of this species and a platform for studying the factors that control its metamorphosis. Metamorphosis in B. amphitrite involves a complex sequence of events: cementation, epidermis separation from the cypris cuticle, degeneration of cypris musculature, rotation of the thorax inside the mantle cavity, building of the juvenile musculature, contraction of antennular muscles, raising of the body, shedding of the cypris cuticle, shell plate and basis formation and, possibly, a further moult to become a suspension feeding barnacle. We compare these events with developmental information from other barnacle species and discuss them in the framework of barnacle settlement ecology

    Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Thecostraca are arguably the most morphologically and biologically variable group within the Crustacea, including both suspension feeders (Cirripedia: Thoracica and Acrothoracica) and parasitic forms (Cirripedia: Rhizocephala, Ascothoracida and Facetotecta). Similarities between the metamorphosis found in the Facetotecta and Rhizocephala suggests a common evolutionary origin, but until now no comprehensive study has looked at the basic evolution of these thecostracan groups.</p> <p>Results</p> <p>To this end, we collected DNA sequences from three nuclear genes [18S rRNA (2,305), 28S rRNA (2,402), Histone H3 (328)] and 41 larval characters in seven facetotectans, five ascothoracidans, three acrothoracicans, 25 rhizocephalans and 39 thoracicans (ingroup) and 12 Malacostraca and 10 Copepoda (outgroup). Maximum parsimony, maximum likelihood and Bayesian analyses showed the Facetotecta, Ascothoracida and Cirripedia each as monophyletic. The better resolved and highly supported DNA maximum likelihood and morphological-DNA Bayesian analysis trees depicted the main phylogenetic relationships within the Thecostraca as (Facetotecta, (Ascothoracida, (Acrothoracica, (Rhizocephala, Thoracica)))).</p> <p>Conclusion</p> <p>Our analyses indicate a convergent evolution of the very similar and highly reduced slug-shaped stages found during metamorphosis of both the Rhizocephala and the Facetotecta. This provides a remarkable case of convergent evolution and implies that the advanced endoparasitic mode of life known from the Rhizocephala and strongly indicated for the Facetotecta had no common origin. Future analyses are needed to determine whether the most recent common ancestor of the Thecostraca was free-living or some primitive form of ectoparasite.</p

    Innovative sea surface monitoring with GNSS-REflectometry aboard ISS: overview and recent results from GEROS-ISS

    Get PDF
    GEROS-ISS (GEROS hereafter) stands for GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. It is a scientific experiment, proposed to the European Space Agency (ESA) in 2011 for installation aboard the ISS. The main focus of GEROS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) for remote sensing of the System Earth with focus to Climate Change characterisation. The GEROS mission idea and the current status are briefly reviewed.Peer ReviewedPostprint (author's final draft

    Rhizocephala

    No full text
    • …
    corecore