9 research outputs found

    Presenilin-1 affects trafficking and processing of βAPP and is targeted in a complex with nicastrin to the plasma membrane

    Get PDF
    Amyloid β-peptide (Aβ) is generated by the consecutive cleavages of β- and γ-secretase. The intramembraneous γ-secretase cleavage critically depends on the activity of presenilins (PS1 and PS2). Although there is evidence that PSs are aspartyl proteases with γ-secretase activity, it remains controversial whether their subcellular localization overlaps with the cellular sites of Aβ production. We now demonstrate that biologically active GFP-tagged PS1 as well as endogenous PS1 are targeted to the plasma membrane (PM) of living cells. On the way to the PM, PS1 binds to nicastrin (Nct), an essential component of the γ-secretase complex. This complex is targeted through the secretory pathway where PS1-bound Nct becomes endoglycosidase H resistant. Moreover, surface-biotinylated Nct can be coimmunoprecipitated with PS1 antibodies, demonstrating that this complex is located to cellular sites with γ-secretase activity. Inactivating PS1 or PS2 function by mutagenesis of one of the critical aspartate residues or by γ-secretase inhibitors results in delayed reinternalization of the β-amyloid precursor protein and its accumulation at the cell surface. Our data suggest that PS is targeted as a biologically active complex with Nct through the secretory pathway to the cell surface and suggest a dual function of PS in γ-secretase processing and in trafficking

    Transport of Streptococcus pneumoniae Capsular Polysaccharide in MHC Class II Tubules

    Get PDF
    Bacterial capsular polysaccharides are virulence factors and are considered T cell–independent antigens. However, the capsular polysaccharide Sp1 from Streptococcus pneumoniae serotype 1 has been shown to activate CD4(+) T cells in a major histocompatibility complex (MHC) class II–dependent manner. The mechanism of carbohydrate presentation to CD4(+) T cells is unknown. We show in live murine dendritic cells (DCs) that Sp1 translocates from lysosomal compartments to the plasma membrane in MHCII-positive tubules. Sp1 cell surface presentation results in reduction of self-peptide presentation without alteration of the MHCII self peptide repertoire. In DM-deficient mice, retrograde transport of Sp1/MHCII complexes resulting in T cell–dependent immune responses to the polysaccharide in vitro and in vivo is significantly reduced. The results demonstrate the capacity of a bacterial capsular polysaccharide antigen to use DC tubules as a vehicle for its transport as an MHCII/saccharide complex to the cell surface for the induction of T cell activation. Furthermore, retrograde transport requires the functional role of DM in self peptide–carbohydrate exchange. These observations open new opportunities for the design of vaccines against microbial encapsulated pathogens

    Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription

    No full text
    The dynamics and function of ribosomal proteins in the cell nucleus remain enigmatic. Here we provide evidence that specific components of Drosophila melanogaster ribosomes copurify with linker histone H1. Using various experimental approaches, we demonstrate that this association of nuclear ribosomal proteins with histone H1 is specific, and that colocalization occurs on condensed chromatin in vivo. Chromatin immunoprecipitation analysis confirmed that specific ribosomal proteins are associated with chromatin in a histone H1-dependent manner. Overexpression of either histone H1 or ribosomal protein L22 in Drosophila cells resulted in global suppression of the same set of genes, while depletion of H1 and L22 caused up-regulation of tested genes, suggesting that H1 and ribosomal proteins are essential for transcriptional gene repression. Overall, this study provides evidence for a previously undefined link between ribosomal proteins and chromatin, and suggests a role for this association in transcriptional regulation in higher eukaryotes

    Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells

    No full text
    Generation of amyloid-beta (Abeta) from the amyloid precursor protein (APP) requires proteolytic cleavage by two proteases, beta- and gamma-secretase. Several lines of evidence suggest a role for cholesterol on secretase activities, although the responsible cellular mechanisms remain unclear. Here we show that alterations in cholesterol transport from late endocytic organelles to the endoplasmic reticulum have important consequences for both APP processing and the localization of gamma-secretase-associated presenilins (PS). Exposure of neuronal cells to cholesterol transport-inhibiting agents resulted in a marked decrease in beta-cleavage of full-length APP. In contrast, gamma-secretase activity on APP C-terminal fragments was enhanced, increasing the production of both Abeta40 and Abeta42. Remarkably, retention of cholesterol in endosomal/lysosomal compartments induced PS1 and PS2 to accumulate in Rab7-positive vesicular organelles implicated in cholesterol sorting. Accumulation of PS in vesicular compartments was prominent in both Chinese hamster ovary cells deficient in Niemann-Pick C1 protein as well as in neuronal cells exposed to the cholesterol transport-inhibiting agent U18666A. Because Abeta42 also localized to PS1-containing vesicular compartments, organelles involved in cholesterol transport might represent an important site for gamma-secretase activity. Our results suggest that the subcellular distribution of cholesterol may be an important factor in how cholesterol alters Abeta production and the risk of Alzheimer's disease

    DM Dependency of Sp1 Retrograde Transport in MHCII-Positive Tubules

    No full text
    <div><p>(A) DM<sup>−/−</sup> iDCs transfected with MHCII-GFP were treated for 30 min with Sp1-Alexa 594 (500 μg/ml) before live cell imaging by confocal microscopy. Merged fluorescence images of DM<sup>−/−</sup> iDCs reveal co-localization of Sp1 with MHCII-GFP in lysosomes. No MHCII is found on the cell surface.</p><p>(B) DM<sup>−/−</sup> iDCs transfected with MHCII-GFP were pre-incubated with Sp1-Alexa 594 (500 μg/ml) for 30 min and then treated with LPS for 4 h. Merged fluorescence live cell images of confocal microscopy demonstrate that DCs form MHCII-GFP–positive tubules by 4 h of stimulation with LPS that extend from the perinuclear area to the cell surface (arrows) while Sp1-Alexa 594 remains lysosomal (right panel). Scale bar, 10 μm.</p><p>(C) DCs from WT or DM<sup>−/−</sup> mice expressing MHCII-GFP were stimulated with Sp1-Alexa 594 (500 μg/ml) for 30 min and LPS for various time intervals. Immune interactions with CFSE-labeled WT T cells were analyzed by live cell fluorescent microscopy imaging (see also <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.0030032#ppat-0030032-g002" target="_blank">Figure 2</a>E and <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.0030032#ppat-0030032-g002" target="_blank">2</a>F).</p></div
    corecore