236 research outputs found

    Sex in Penicillium series Roqueforti

    Get PDF
    Various fungi were isolated during the course of a survey in a cold-store of apples in the Netherlands. One of these fungi belongs to the genus Penicillium and produces cleistothecia at 9 and 15 °C. A detailed study using a combination of phenotypic characters, sequences and extrolite patterns showed that these isolates belong to a new species within the series Roqueforti. The formation of cleistothecia at low temperatures and the inability to produce roquefortine C, together with a unique phylogenetic placement, make these isolates a novel entity in the Roqueforti series. The name Penicillium psychrosexualis sp. nov. (CBS 128137T) is proposed here for these isolates

    Polyphasic taxonomy of Aspergillus section Sparsi

    Get PDF
    Aspergillus section Sparsi includes species which have large globose conidial heads with colours ranging from light grey to olive-buff. In this study, we examined isolates of species tentatively assigned to section Sparsi using a polyphasic approach. The characters examined include sequence analysis of partial ÎČ-tubulin, calmodulin and ITS sequences of the isolates, morphological and physiological tests, and examination of the extrolite profiles. Our data indicate that the revised section Sparsi includes 10 species: A. anthodesmis, A. biplanus, A. conjunctus, A. diversus, A. funiculosus, A. implicatus, A. panamensis, A. quitensis, A. sparsus, and the new taxon A. haitiensis. The recently described A. quitensis and A. ecuadorensis are synonyms of A. amazonicus based on both molecular and physiological data. The white-spored species A. implicatus has also been found to belong to this section. Aspergillus haitiensis sp. nov. is characterised by whitish colonies becoming reddish brown due to the production of conidial heads, and dark coloured smooth stipes. The taxon produces gregatins, siderin and several unknown but characteristic metabolites

    Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    Get PDF
    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311(T) = IBT 12289(T)). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species

    Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fumonisins are economically important mycotoxins which until recently were considered to originate from only a few <it>Fusarium </it>species. However recently a putative fumonisin gene cluster was discovered in two different <it>Aspergillus niger </it>strains followed by detection of an actual fumonisin B<sub>2 </sub>(FB<sub>2</sub>) production in four strains of this biotechnologically important workhorse.</p> <p>Results</p> <p>In the present study, a screening of 5 <it>A. niger </it>strains and 25 assumed fumonisin producing <it>Fusarium </it>strains from 6 species, showed that all 5 <it>A. niger </it>strains produced FB<sub>2 </sub>and 23 of 25 <it>Fusarium </it>produced fumonisin B<sub>1 </sub>and other isoforms (fumonisin B<sub>2 </sub>and B<sub>3</sub>). Five <it>A. niger </it>and five <it>Fusarium </it>spp. were incubated at six different temperatures from 15-42°C on Czapek Yeast Agar +5% salt or Potato Dextrose Agar. <it>A. niger </it>had the highest production of FB<sub>2 </sub>at 25-30°C whereas <it>Fusarium </it>spp. had the maximal production of FB<sub>1 </sub>and FB<sub>2 </sub>at 20-25°C. Addition of 2.5-5% NaCl, or 10-20% sucrose increased the FB<sub>2 </sub>production of <it>A. niger</it>, whereas addition of glycerol reduced FB<sub>2 </sub>production. All three water activity lowering solutes reduced the fumonisin production of the <it>Fusarium </it>species.</p> <p>Conclusion</p> <p>The present study shows that the regulation of fumonisin production is very different in <it>A. niger </it>and <it>Fusarium</it>, and that food and feeds preserved by addition of sugar or salts may be good substrates for fumonisin B<sub>2 </sub>production by <it>A. niger</it>.</p

    Delimitation and characterisation of Talaromyces purpurogenus and related species

    Get PDF
    Taxa of the Talaromyces purpurogenus complex were studied using a polyphasic approach. ITS barcodes were used to show relationships between species of the T. purpurogenus complex and other Talaromyces species. RPB1, RPB2, ÎČ-tubulin and calmodulin sequences were used to delimit phylogenetic species in the complex. These data, combined with phenotypic characters, showed that the complex contains four species: T. purpurogenus, T. ruber comb. nov. and two new species T. amestolkiae sp. nov. and T. stollii sp. nov. The latter three species belong to the same clade and T. purpurogenus is located in a phylogenetic distant clade. The four species all share similar conidiophore morphologies, but can be distinguished by macromorphological characters. Talaromyces ruber has a very distinct colony texture on malt extract agar (MEA), produces bright yellow and red mycelium on yeast extract sucrose agar (YES) and does not produce acid on creatine sucrose agar (CREA). In contrast, T. amestolkiae and T. stollii produce acid on CREA. These two species can be differentiated by the slower growth rate of T. amestolkiae on CYA incubated at 36 °C. Furthermore, T. stollii produces soft synnemata-like structures in the centre of colonies on most media. Extrolite analysis confirms the distinction of four species in the T. purpurogenus complex. The red diffusing pigment in T. purpurogenus is a mixture of the azaphilone extrolites also found in Monascus species, including N-glutarylrubropunctamine and rubropunctatin. Talaromyces purpurogenus produced four different kinds of mycotoxins: rubratoxins, luteoskyrin, spiculisporic acid and rugulovasins and these mycotoxins were not detected in the other three specie

    Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404)

    Full text link
    Seven new prenylated indole alkaloids, taichunamides A–G, were isolated from the fungus Aspergillus taichungensis (IBT 19404). Taichunamides A and B contained an azetidine and 4‐pyridone units, respectively, and are likely biosynthesized from notoamide S via (+)‐6‐epi‐stephacidin A. Taichunamides C and D contain endoperoxide and methylsulfonyl units, respectively. This fungus produced indole alkaloids containing an anti‐bicyclo[2.2.2]diazaoctane core, whereas A. protuberus and A. amoenus produced congeners with a syn‐bicyclo[2.2.2]diazaoctane core. Plausible biosynthetic pathways to access these cores within the three species likely arise from an intramolecular hetero Diels–Alder reaction.Sieben neue prenylierte Indolalkaloide wurden aus A. taichungensis isoliert. Dieser Pilz erzeugt Alkaloide mit anti‐Bicyclo[2.2.2]diazaoctan‐Kern, wĂ€hrend A. protuberus und A. amoenus syn‐Derivate herstellen. Die StrukturdiversitĂ€t der von Tryptophan abgeleiteten SekundĂ€rmetaboliten deutet auf stereochemisch und strukturell hoch entwickelte Synthesefunktionen fĂŒr SekundĂ€rmetaboliten in diesen orthologen Pilzen hin.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137451/1/ange201509462.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137451/2/ange201509462-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137451/3/ange201509462_am.pd

    Identification of the decumbenone biosynthetic gene cluster in and the importance for production of calbistrin

    Get PDF
    Background: Filamentous fungi are important producers of secondary metabolites, low molecular weight molecules that often have bioactive properties. Calbistrin A is a secondary metabolite with an interesting structure that was recently found to have bioactivity against leukemia cells. It consists of two polyketides linked by an ester bond: a bicyclic decalin containing polyketide with structural similarities to lovastatin, and a linear 12 carbon dioic acid structure. Calbistrin A is known to be produced by several uniseriate black Aspergilli, Aspergillus versicolor-related species, and Penicillia. Penicillium decumbens produces calbistrin A and B as well as several putative intermediates of the calbistrin pathway, such as decumbenone A-B and versiol. Results: A comparative genomics study focused on the polyketide synthase (PKS) sets found in three full genome sequence calbistrin producing fungal species, P. decumbens, A. aculeatus and A. versicolor, resulted in the identification of a novel, putative 13-membered calbistrin producing gene cluster (calA to calM). Implementation of the CRISPR/Cas9 technology in P. decumbens allowed the targeted deletion of genes encoding a polyketide synthase (calA), a major facilitator pump (calB) and a binuclear zinc cluster transcription factor (calC). Detailed metabolic profiling, using UHPLC-MS, of the ∆calA (PKS) and ∆calC (TF) strains confirmed the suspected involvement in calbistrin productions as neither strains produced calbistrin nor any of the putative intermediates in the pathway. Similarly analysis of the excreted metabolites in the ∆calB (MFC-pump) strain showed that the encoded pump was required for efficient export of calbistrin A and B. Conclusion: Here we report the discovery of a gene cluster (calA-M) involved in the biosynthesis of the polyketide calbistrin in P. decumbens. Targeted gene deletions proved the involvement of CalA (polyketide synthase) in the biosynthesis of calbistrin, CalB (major facilitator pump) for the export of calbistrin A and B and CalC for the transcriptional regulation of the cal-cluster. This study lays the foundation for further characterization of the calbistrin biosynthetic pathway in multiple species and the development of an efficient calbistrin producing cell factory

    Technologies for restricting mould growth on baled silage

    Get PDF
    End of project reportSilage is made on approximately 86% of Irish farms, and 85% of these make some baled silage. Baled silage is particularly important as the primary silage making, storage and feeding system on many beef and smaller sized farms, but is also employed as a secondary system (often associated with facilitating grazing management during mid-summer) on many dairy and larger sized farms (O’Kiely et al., 2002). Previous surveys on farms indicated that the extent of visible fungal growth on baled silage was sometimes quite large, and could be a cause for concern. Whereas some improvements could come from applying existing knowledge and technologies, the circumstances surrounding the making and storage of baled silage suggested that environmental conditions within the bale differed from those in conventional silos, and that further knowledge was required in order to arrive at a secure set of recommendations for baled silage systems. This report deals with the final in a series (O’Kiely et al., 1999; O’Kiely et al., 2002) of three consecutive research projects investigating numerous aspect of the science and technology of baled silage. The success of each depended on extensive, integrated collaboration between the Teagasc research centres at Grange and Oak Park, and with University College Dublin. As the series progressed the multidisciplinary team needed to underpin the programme expanded, and this greatly improved the amount and detail of the research undertaken. The major objective of the project recorded in this report was to develop technologies to improve the “hygienic value” of baled silage
    • 

    corecore