254 research outputs found

    Modeling long-range interactions across the visual field in stereo correspondence

    Get PDF
    When the eyes are converged, most objects in the visual scene will have a significant vertical disparity as measured at the retina. The pattern of vertical disparity across the retina is largely independent of object depth, depending mainly on the particular eye position adopted. Recently, Phillipson and Read (2010, European Journal of Neuroscience, doi:10.1111/j.1460-9568.2010.07454.x) showed that humans are better at achieving stereo correspondence when the vertical disparity field indicated infinite viewing distance, even when the physical viewing distance was just 30cm. They interpreted this as indicating that disparity encoding is optimized for long viewing distances, and is not updated to reflect changes in eye posture. Their results also indicated a significant effect of the visual periphery. Performance was better when the vertical disparity across the entire visual field was consistent with a given binocular eye position – even when this was not the eye position actually adopted – than when the vertical disparity beyond 20o eccentricity indicated a different eye position than that within 20o eccentricity. This is a surprising result, since (i) the task was to detect a target 8o in diameter, extending from 10o to 18o eccentricity, so information beyond 20o was completely irrelevant to the task, and (ii) many previous results indicate that the visual system detects and uses vertical disparity in local regions, even when the global vertical disparity field is not consistent with any single binocular eye position. Here, I show that this effect can be explained by a template-matching model in which the response of a population of disparity-detectors is compared with stored templates of the response expected to stimuli of known disparity

    Enslavement and Redemption: the Census of Augustus and the Birth of Jesus in Luke 2.1-7 Codex Bezae

    Get PDF
    Els problemes històrics al voltant de la menció lucana del cens romà en Lc 2.1-2 són ben coneguts. La informació que forneix la narrativa és precisa, tot i què no concorda gaire amb el que se sap d’altres llocs sobre la pràctica romana del cens, o fins i tot , amb altres fets datables de l’evangeli de Lluc. Han estat proposades diverses explicacions per justificar la fiabilitat de Lluc com el narrador del tercer Evangeli i/o entendre aquesta disconformitat, però no n’hi ha cap que s’hagi admès unànimement. Quan el text es llegeix seguint el manuscrit del Còdex Bezae (D05), el problema es presenta de manera diferent, amb la seva pròpia interpretació corresponent que aporta una nova comprensió de la probable intenció de Lluc. El propòsit de l’associació del naixement del Messies amb un cens romà hauria estat col·locar el pla diví per l’alliberament d’Israel contra els plans dels invasors humans de dominar i oprimir el poble jueu. Fent un contrast entre el cens mundà i l’any jubilar de Levític 25, el narrador escriu des d’una forta perspectiva jueva, que confirma les evidències trobades a diversos llocs del text Beza, segons les quals l’autor dels dos volums de Lluc seria un jueu creient en Jesús, que escriu a un altre jueu benestant per tal de presentar Jesús com el Messies a la llum de les expectatives tradicionals jueves

    A Physics of Middle-earth

    Get PDF
    This paper takes a light-hearted look at how far one can go in applying primary world science to Middle-earth. Tolkien purists and physics purists may wish to pass over this

    Viewing 3D TV over two months produces no discernible effects on balance, coordination or eyesight

    Get PDF
    With the rise in stereoscopic 3D media, there has been concern that viewing stereoscopic 3D (S3D) content could have long-term adverse effects, but little data are available. In the first study to address this, 28 households who did not currently own a 3D TV were given a new TV set, either S3D or 2D. The 116 members of these households all underwent tests of balance, coordination and eyesight, both before they received their new TV set, and after they had owned it for 2 months. We did not detect any changes which appeared to be associated with viewing 3D TV. We conclude that viewing 3D TV does not produce detectable effects on balance, coordination or eyesight over the timescale studied. Practitioner Summary: Concern has been expressed over possible long-term effects of stereoscopic 3D (S3D). We looked for any changes in vision, balance and coordination associated with normal home S3D TV viewing in the 2 months after first acquiring a 3D TV. We find no evidence of any changes over this timescale

    Ocular accommodation and wavelength: The effect of longitudinal chromatic aberration on the stimulus-response curve.

    Get PDF
    The longitudinal chromatic aberration (LCA) of the eye creates a chromatic blur on the retina that is an important cue for accommodation. Although this mechanism can work optimally in broadband illuminants such as daylight, it is not clear how the system responds to the narrowband illuminants used by many modern displays. Here, we measured pupil and accommodative responses as well as visual acuity under narrowband light-emitting diode (LED) illuminants of different peak wavelengths. Observers were able to accommodate under narrowband light and compensate for the LCA of the eye, with no difference in the variability of the steady-state accommodation response between narrowband and broadband illuminants. Intriguingly, our subjects compensated more fully for LCA at nearer distances. That is, the difference in accommodation to different wavelengths became larger when the object was placed nearer the observer, causing the slope of the accommodation response curve to become shallower for shorter wavelengths and steeper for longer ones. Within the accommodative range of observers, accommodative errors were small and visual acuity normal. When comparing between illuminants, when accommodation was accurate, visual acuity was worst for blue narrowband light. This cannot be due to the sparser spacing for S-cones, as our stimuli had equal luminance and thus activated LM-cones roughly equally. It is likely because ocular LCA changes more rapidly at shorter wavelength and so the finite spectral bandwidth of LEDs corresponds to a greater dioptric range at shorter wavelengths. This effect disappears for larger accommodative errors, due to the increased depth of focus of the eye

    Visual suppression in intermittent exotropia during binocular alignment.

    Get PDF
    PURPOSE To investigate the cortical mechanisms that prevent diplopia in intermittent exotropia (X(T)) during binocular alignment (orthotropia). METHODS The authors studied 12 X(T) patients aged 5 to 22 years. Seventy-five percent had functional stereo vision with stereoacuity similar to that of 12 age-matched controls (0.2-3.7 min arc). Identical face images were presented to the two eyes for 400 ms. In one eye, the face was presented at the fovea; in the other, offset along the horizontal axis with up to 12° eccentricity. The task was to indicate whether one or two faces were perceived. RESULTS All X(T) patients showed normal diplopia when the nonfoveal face was presented to nasal hemiretina, though with a slightly larger fusional range than age-matched controls. However, 10 of 12 patients never experienced diplopia when the nonfoveal face was presented to temporal hemiretina (i.e., when the stimulus simulated exodeviation). Patients showed considerable variability when the single image was perceived. Some patients suppressed the temporal stimulus regardless of which eye viewed it, whereas others suppressed a particular eye even when it viewed the foveal stimulus. In two patients, the simulated exodeviation might have triggered a shift from normal to anomalous retinal correspondence. CONCLUSIONS Antidiplopic mechanisms in X(T) can be reliably triggered by purely retinal information during orthotropia, but the nature of these mechanisms varies between patients
    • …
    corecore