3,462 research outputs found

    Augmenting decision competence in healthcare using AI-based cognitive models

    Get PDF

    The discontinuous Galerkin method for fractional degenerate convection-diffusion equations

    Full text link
    We propose and study discontinuous Galerkin methods for strongly degenerate convection-diffusion equations perturbed by a fractional diffusion (L\'evy) operator. We prove various stability estimates along with convergence results toward properly defined (entropy) solutions of linear and nonlinear equations. Finally, the qualitative behavior of solutions of such equations are illustrated through numerical experiments

    The Radio Quiescence of Active Galaxies with High Accretion Rates

    Full text link
    We present 6 cm Very Large Array observations of the Greene & Ho (2004) sample of 19 low-mass active galaxies with high accretion rates. This is one of the only studies of a uniform sample of narrow-line Seyfert 1 (NLS1) galaxies with such high sensitivity and resolution. Although we detect only one source, the entire sample is very radio-quiet down to strong limits. GH10 was found to have a radio power of 8.5 x 10^21 W/Hz, and a ratio R = f(6 cm)/f(4400 A) of 2.8. The 3 sigma upper limits for the remaining nondetections correspond to radio powers from 3 x 10^20 to 8 x 10^21 W/Hz and 0.47 < R <9.9. Stacking all nondetections yields an even stronger upper limit of R < 0.27. An assessment of existing observations in the literature confirms our finding that NLS1s are consistently radio-quiet, with a radio-loud fraction of 0%-6%, which is significantly lower than the 10%-20% observed in the general quasar population. By analogy with stellar-mass black holes, we argue that AGNs undergo a state transition at L_bol/L_Edd~0.01. Below this value a radiatively inefficient accretion flow effectively drives an outflow, which disappears when the flow turns into an optically thick, geometrically thin disk, or a radiation pressure-dominated slim disk at still higher L_bol/L_Edd.Comment: To appear in ApJ; 8 pages, 3 figures; uses emulateapj5.st

    Assessing the Challenges of Surface‐Level Aerosol Mass Estimates From Remote Sensing During the SEAC4RS and SEARCH Campaigns: Baseline Surface Observations and Remote Sensing in the Southeastern United States

    Get PDF
    The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign conducted in the southeast United States (SEUS) during the summer of 2013 provided a singular opportunity to study local aerosol chemistry and investigate aerosol radiative properties and PM2.5 relationships, focusing on the complexities involved in simplifying the relationship into a linear regression. We utilize three Southeastern Aerosol Research and Characterization network sites and one Environmental Protection Agency Chemical Speciation Network station that afforded simultaneous Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and aerosol mass, chemistry, and light scattering monitoring. Prediction of AERONET AOD using linear regression of daily‐mean PM2.5 during the SEAC4RS campaign yielded r2 of 0.36–0.53 and highly variable slopes across four sites. There were further reductions in PM2.5 predictive skill using Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi‐angle Imaging SpetroRadiometer (MISR) AOD data, which have shorter correlation lengths and times relative to surface PM2.5. Long‐term trends in aerosol chemistry and optical properties in the SEUS are also investigated and compared to SEAC4RS period data, establishing that the SEUS experienced significant reduction in aerosol mass, corresponding with changes in both aerosol chemistry and optical properties. These changes have substantial impact on the PM2.5‐AOD linear regression relationship and reinforce the need for long‐term aerosol observation stations in addition to concentrated field campaigns

    Spin 1 inversion: a Majorana tensor force for deuteron alpha scattering

    Get PDF
    We demonstrate, for the first time, successful S-matrix to potential inversion for spin one projectiles with non-diagonal Sllâ€ČjS^j_{ll'} yielding a TRT_{\rm R} interaction. The method is a generalization of the iterative-perturbative, IP, method. We present a test case indicating the degree of uniqueness of the potential. The method is adapted, using established procedures, into direct observable to potential inversion, fitting σ\sigma, iT11{\rm i}T_{11}, T20T_{20}, T21T_{21} and T22T_{22} for d + alpha scattering over a range of energies near 10 MeV. The TRT_{\rm R} interaction which we find is very different from that proposed elsewhere, both real and imaginary parts being very different for odd and even parity channels.Comment: 7 pages Revtex, 4 ps figure

    Candidate Type II Quasars at 2 < z < 4.3 in the Sloan Digital Sky Survey III

    Full text link
    At low redshifts, dust-obscured quasars often have strong yet narrow permitted lines in the rest-frame optical and ultraviolet, excited by the central active nucleus, earning the designation Type II quasars. We present a sample of 145 candidate Type II quasars at redshifts between 2 and 4.3, encompassing the epoch at which quasar activity peaked in the universe. These objects, selected from the quasar sample of the Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey III, are characterized by weak continuum in the rest-frame ultraviolet (typical continuum magnitude of i \approx 22) and strong lines of CIV and Ly \alpha, with Full Width at Half Maximum less than 2000 kms-1. The continuum magnitudes correspond to an absolute magnitude of -23 or brighter at redshift 3, too bright to be due exclusively to the host galaxies of these objects. Roughly one third of the objects are detected in the shorter-wavelength bands of the WISE survey; the spectral energy distributions (SEDs) of these objects appear to be intermediate between classic Type I and Type II quasars seen at lower redshift. Five objects are detected at rest frame 6\mu m by Spitzer, implying bolometric luminosities of several times 10^46 erg s-1. We have obtained polarization measurements for two objects; they are roughly 3% polarized. We suggest that these objects are luminous quasars, with modest dust extinction (A_V ~ 0.5 mag), whose ultraviolet continuum also includes a substantial scattering contribution. Alternatively, the line of sight to the central engines of these objects may be partially obscured by optically thick material.Comment: 26 pages, 13 figures, 10 tables, 4 machine readable tables. Accepted for publication in MNRA

    Re-Inventing Public Education:The New Role of Knowledge in Education Policy-Making

    Get PDF
    This article focuses on the changing role of knowledge in education policy making within the knowledge society. Through an examination of key policy texts, the Scottish case of Integrated Children Services provision is used to exemplify this new trend. We discuss the ways in which knowledge is being used in order to re-configure education as part of a range of public services designed to meet individuals' needs. This, we argue, has led to a 'scientization' of education governance where it is only knowledge, closely intertwined with action (expressed as 'measures') that can reveal problems and shape solutions. The article concludes by highlighting the key role of knowledge policy and governance in orienting education policy making through a re-invention of the public role of education

    Black Holes in Pseudobulges and Spheroidals: A Change in the Black Hole-Bulge Scaling Relations at Low Mass

    Full text link
    We investigate the relationship between black hole mass and host galaxy properties for active galaxies with the lowest black hole masses currently known in galaxy nuclei. Hubble Space Telescope imaging confirms that the host galaxies have correspondingly low luminosity; they are ~1 mag below L*. In terms of morphology, ~60% of the members of the sample are disk-dominated, and all of these are consistent with containing a bulge or (more likely) pseudobulge, while the remainder are compact systems with no discernible disk component. In general the compact components of the galaxies do not obey the fundamental plane of giant elliptical galaxies and classical bulges, but rather are less centrally concentrated at a given luminosity, much like spheroidal galaxies. Our results strongly confirm that a classical bulge is not a requirement for a nuclear black hole. At the same time, the observed ratio of black hole to bulge mass is nearly an order of magnitude lower in this sample than that seen for classical bulges. While the M-sigma relation appears to continue to low mass, it seems that black hole-galaxy scaling relations do depend on galaxy structure.Comment: to appear in ApJ; 22 pages; 8 figures; original version available at http://www.astro.princeton.edu/~jgreene/paper.pd

    Putting the Bar Exam to the Test: An Examination of the Predictive Validity of Bar Exam Outcomes on Lawyering Effectiveness

    Get PDF
    How well does bar exam performance, on the whole, predict lawyering effectiveness? Is performance on some components of the bar exam more predictive? The current study, the first of its kind to measure the relationship between bar exam scores and a new lawyer’s effectiveness, evaluates these questions by combining three unique datasets—bar results from the State Bar of Nevada, a survey of recently admitted lawyers, and a survey of supervisors, peers, and judges who were asked to evaluate the effectiveness of recently-admitted lawyers. We find that performance on both the Multistate Bar Examination (MBE) and essay components of the Nevada Bar have little relationship with the assessed lawyering effectiveness of new lawyers, calling into question the usefulness of these tests
    • 

    corecore