8 research outputs found

    Pre-treatment of blood samples reveal normal blood hypocretin/orexin signal in narcolepsy type 1

    Get PDF
    The hypocretin/orexin system regulates arousal through central nervous system mechanisms and plays an important role in sleep, wakefulness and energy homeostasis. It is unclear whether hypocretin peptides are also present in blood due to difficulties in measuring reliable and reproducible levels of the peptides in blood samples. Lack of hypocretin signalling causes the sleep disorder narcolepsy type 1, and low concentration of cerebrospinal fluid hypocretin-l/oreadn-A peptide is a hallmark of the disease. This measurement has high diagnostic value, but performing a lumbar puncture is not without discomfort and possible complications for the patient. A blood-based test to assess hypocretin-1 deficiency would therefore be of obvious benefit. We here demonstrate that heating plasma or scrum samples to 65 degrees C for 30 min at pH 8 significantly increases hypocretin-1 immunoreactivity enabling stable and reproducible measurement of hypocretin-1 in blood samples. Specificity of the signal was verified by high-performance liquid chromatography and by measuring blood samples from mice lacking hypocretin. Unspecific background signal in the assay was high. Using our method, we show that hypocretin-1 immunoreactivity in blood samples from narcolepsy type 1 patients does not differ from the levels detected in control samples. The data presented here suggest that hypocretin-1 is present in the blood stream in the low picograms per millilitres range and that peripheral hypocretin-1 concentrations are unchanged in narcolepsy type 1

    Repeated measures of hypocretin-1 in Danish and Italian patients with narcolepsy and in controls

    No full text
    Study objectives: The assay currently used worldwide to measure cerebrospinal fluid hypocretin-1 (CSF-hcrt-1) for diagnosing narcolepsy uses a competitive radioimmunoassay with polyclonal anti-hcrt-1 antibodies. This assay detects multiple hypocretin-1 immunoreactive species in the CSF that are all derived from full-length hcrt-1. We aimed to revalidate CSF-hcrt-1 cut-offs for narcolepsy type 1 (NT1) diagnosis and to evaluate temporal changes in CSF-hcrt-1 levels in patients suspected of having central hypersomnia. Method: We carried out a repeat lumbar puncture with a mean follow-up of 4.0 years, to measure CSF-hcrt-1 in patients suspected of having central hypersomnia in a follow-up study. Data from CSF samples of patients with NT1 and of controls without known hypersomnia, from the Italian-Stanford and Danish populations, were examined using a receiver-operating characteristic analysis. Results: The optimal CSF-hcrt-1 cut-offs for identifying NT1 were 129 pg/ml and 179 pg/ml for the Italian-Stanford and Danish populations, respectively. The sensitivity was 0.93-0.99 and the specificity was 1. Follow-up lumbar puncture measurements of CSF-hcrt-1 were obtained from 73 patients. 30 of 32 patients with low CSF-hcrt-1 levels continued to be categorized as low, with an unaltered diagnosis; two patients showed a marked increase in CSF-hcrt-1, attaining normal values at follow-up. One of these patients relapsed to low CSF-hcrt-1 after follow-up. All 41 patients with normal CSF-hcrt-1 at baseline had normal CSF-hcrt-1 at follow-up. Conclusion: CSF-hcrt-1 measurement can provide an accurate test for diagnosing NT1, although it is important to validate the CSF-hcrt-1 cut-off for specific testing locations. Stable CSF-hcrt-1 levels support the already established prognosis of narcolepsy as permanent once the disorder has fully developed
    corecore