596 research outputs found

    Minor Planet 2008 ED69 and the Kappa Cygnid Meteor Shower

    Get PDF
    Until recently, the kappa Cygnids (IAU#12) were considered an old shower, because the meteors were significantly dispersed in node, radiant, and speed, despite being 28-38° inclined. In 1993, an outburst of kappa Cygnids was observed, which implied that this meteoroid stream was relatively young, instead. At least some dust was still concentrated in dust trailets. Until now, no active comet parent body was known, however, and the wide 22° dispersion of nodes was difficult to explain. This work reports that a minor planet has been discovered that has the right orbital dynamics to account for the kappa Cygnids. Minor planet 2008 ED69 is intrinsically bright, with H = 16.7 ± 0.3, and moves in a highly inclined orbit (i = 36.3°). With one node near Jupiter's orbit, the perihelion distance, longitude of perihelion, and node quickly change over time, but in a manner that keeps dust concentrated for a long period of time. The stream is more massive than the remaining body, and a form of fragmentation is implicated. A break-up, leaving a stream of meteoroids and at least the one remaining fragment 2008 ED69, can account for the observed dispersion of the kappa Cygnids in Earth's orbit, if the formation epoch is about 2-3 nutation cycles ago, dating to around 4000-1600 BC. Most of that debris now passes close to the orbit of Venus, making the kappa Cygnids a significant shower on Venus

    3D/Biela and the Andromedids: Fragmenting versus Sublimating Comets

    Get PDF
    Comet 3D/Biela broke up in 1842/1843 and continued to disintegrate in the returns of 1846 and 1852. When meteor storms were observed in November of 1872 and 1885, it was surmised that those showers were the debris from that breakup. This could have come from one of two sources: (1) the initial separation of fragments near aphelion or (2) the continued disintegration of the fragments afterward. Alternatively, the meteoroids could simply have come from water vapor drag when the fragments approached perihelion (option 3). We investigated the source of the Andromedid storms by calculating the dynamical evolution of dust ejected in a normal manner by water vapor drag in the returns from 1703 to 1866, assuming that the comet would have remained similarly active over each return. In addition, we simulated the isotropic ejection of dust during the initial fragmentation event at aphelion in December of 1842. We conclude that option 2 is the most likely source of meteoroids encountered during the 1872 and 1885 storms, but this accounts for only a relatively small amount of mass lost in a typical comet breakup

    Thermal Desorption of Water-Ice in the Interstellar Medium

    Get PDF
    Water (H2O) ice is an important solid constituent of many astrophysical environments. To comprehend the role of such ices in the chemistry and evolution of dense molecular clouds and comets, it is necessary to understand the freeze-out, potential surface reactivity, and desorption mechanisms of such molecular systems. Consequently, there is a real need from within the astronomical modelling community for accurate empirical molecular data pertaining to these processes. Here we give the first results of a laboratory programme to provide such data. Measurements of the thermal desorption of H2O ice, under interstellar conditions, are presented. For ice deposited under conditions that realistically mimic those in a dense molecular cloud, the thermal desorption of thin films (~50 molecular layers) is found to occur with zero order kinetics characterised by a surface binding energy, E_{des}, of 5773 +/- 60 K, and a pre-exponential factor, A, of 10^(30 +/- 2) molecules cm^-2 s^-1. These results imply that, in the dense interstellar medium, thermal desorption of H2O ice will occur at significantly higher temperatures than has previously been assumed.Comment: 9 pages, 4 figures, accepted for publication in MNRA

    On the Correlation Between CO Absorption and Far-Ultraviolet Non-Linear Extinction Toward Galactic OB Stars

    Get PDF
    A sample of 59 sight lines to reddened Galactic OB stars was examined for correlations of the strength of the CO Fourth Positive (A - X) absorption band system with the ultraviolet interstellar extinction curve parameters. We used archival high-dispersion NEWSIPS IUE spectra to measure the CO absorption for comparison to parametric fits of the extinction curves from the literature. A strong correlation with the non-linear far-UV curvature term was found with greater absorption, normalized to E(B-V), being associated with more curvature. A weaker trend with the linear extinction term was also found. Mechanisms for enhancing CO in dust environments exhibiting high non-linear curvature are discussed.Comment: 10 pages, including 6 figures. LaTeX2e (emulateapj5.sty). To appear in ApJ, Sep 20, 200

    Unusually Weak Diffuse Interstellar Bands toward HD 62542

    Get PDF
    As part of an extensive survey of diffuse interstellar bands (DIBs), we have obtained optical spectra of the moderately reddened B5V star HD 62542, which is known to have an unusual UV extinction curve of the type usually identified with dark clouds. The typically strongest of the commonly catalogued DIBs covered by the spectra -- those at 5780, 5797, 6270, 6284, and 6614 A -- are essentially absent in this line of sight, in marked contrast with other lines of sight of similar reddening. We compare the HD 62542 line of sight with others exhibiting a range of extinction properties and molecular abundances and interpret the weakness of the DIBs as an extreme case of deficient DIB formation in a dense cloud whose more diffuse outer layers have been stripped away. We comment on the challenges these observations pose for identifying the carriers of the diffuse bands.Comment: 20 pages, 4 figures; aastex; accepted by Ap

    The Working Group on Meteor Showers Nomenclature: a History, Current Status and a Call for Contributions

    Get PDF
    During the IAU General Assembly in Rio de Janeiro in 2009, the members of Commission 22 established the Working Group on Meteor Shower Nomenclature, from what was formerly the Task Group on Meteor Shower Nomenclature. The Task Group had completed its mission to propose a first list of established meteor showers that could receive officially names. At the business meeting of Commission 22 the list of 64 established showers was approved and consequently officially accepted by the IAU. A two-step process is adopted for showers to receive an official name from the IAU: i) before publication, all new showers discussed in the literature are first added to the Working List of Meteor Showers, thereby receiving a unique name, IAU number and three-letter code; ii) all showers which come up to the verification criterion are selected for inclusion in the List of Established Meteor Showers, before being officially named at the next IAU General Assembly

    A very public fireball

    Get PDF
    An appeal for witnesses to a fireball on 24 September produced an excellent response from the public; 55 eyewitnesses sent accounts. From their observations we calculated the radiant azimuth as 320degrees, and altitude,angle less than or equal to 20degrees. Without video or CCTV footage for control on the fireball's velocity or pre-entry orbit, we used software developed for dust impact experiments, to assess the most likely orbital trajectory. The highest probability solutions have a semimajor axis between 1.6 and 2.0 AU and an eccentricity of 0.4 to 0.5, corresponding to a typical near-Earth asteroid orbit. Of possible comet showers, the kappa Aquarids are within the calculated constraints. No fragments were found, despite considerable public interest, consistent with the absence of reports of a dust trail. Public response to this fireball demonstrates the great interest in meteoritic phenomena, particularly when, as in this case, participation in the scientific enquiry is actively encouraged

    Perspective: C60+ and laboratory spectroscopy related to diffuse interstellar bands

    Get PDF
    In the last 30 years, our research has focused on laboratory measurements of the electronic spectra of organic radicals and ions. Many of the species investigated were selected based on their potential astrophysical relevance, particularly in connection with the identification of appealing candidate molecules for the diffuse interstellar absorptions. Notably, carbon chains and derivatives containing hydrogen and nitrogen atoms in their neutral and ionic forms were studied. These data could be obtained after developing appropriate techniques to record spectra at low temperatures relevant to the interstellar medium. The measurement of gas phase laboratory spectra has enabled direct comparisons with astronomical data to be made and though many species were found to have electronic transitions in the visible where the majority of diffuse bands are observed, none of the absorptions matched the prominent interstellar features. In 2015, however, the first carrier molecule was identified: C+60. This was achieved after the measurement of the electronic spectrum of C+60–He at 6K in a radiofrequency ion trap
    corecore