87 research outputs found

    Patterns of language and auditory dysfunction in 6-year-old children with epilepsy

    Get PDF
    In a previous study we reported difficulty with expressive language and visuoperceptual ability in preschool children with epilepsy and otherwise normal development. The present study analysed speech and language dysfunction for each individual in relation to epilepsy variables, ear preference, and intelligence in these children and described their auditory function. Twenty 6-year-old children with epilepsy (14 females, 6 males; mean age 6:5 y, range 6 y–6 y 11 mo) and 30 reference children without epilepsy (18 females, 12 males; mean age 6:5 y, range 6 y–6 y 11 mo) were assessed for language and auditory ability. Low scores for the children with epilepsy were analysed with respect to speech-language domains, type of epilepsy, site of epileptiform activity, intelligence, and language laterality. Auditory attention, perception, discrimination, and ear preference were measured with a dichotic listening test, and group comparisons were performed. Children with left-sided partial epilepsy had extensive language dysfunction. Most children with partial epilepsy had phonological dysfunction. Language dysfunction was also found in children with generalized and unclassified epilepsies. The children with epilepsy performed significantly worse than the reference children in auditory attention, perception of vowels and discrimination of consonants for the right ear and had more left ear advantage for vowels, indicating undeveloped language laterality

    Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance.

    Get PDF
    Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance

    Muscle Fiber Viability, a Novel Method for the Fast Detection of Ischemic Muscle Injury in Rats

    Get PDF
    Acute lower extremity ischemia is a limb- and life-threatening clinical problem. Rapid detection of the degree of injury is crucial, however at present there are no exact diagnostic tests available to achieve this purpose. Our goal was to examine a novel technique - which has the potential to accurately assess the degree of ischemic muscle injury within a short period of time - in a clinically relevant rodent model. Male Wistar rats were exposed to 4, 6, 8 and 9 hours of bilateral lower limb ischemia induced by the occlusion of the infrarenal aorta. Additional animals underwent 8 and 9 hours of ischemia followed by 2 hours of reperfusion to examine the effects of revascularization. Muscle samples were collected from the left anterior tibial muscle for viability assessment. The degree of muscle damage (muscle fiber viability) was assessed by morphometric evaluation of NADH-tetrazolium reductase reaction on frozen sections. Right hind limbs were perfusion-fixed with paraformaldehyde and glutaraldehyde for light and electron microscopic examinations. Muscle fiber viability decreased progressively over the time of ischemia, with significant differences found between the consecutive times. High correlation was detected between the length of ischemia and the values of muscle fiber viability. After reperfusion, viability showed significant reduction in the 8-hour-ischemia and 2-hour-reperfusion group compared to the 8-hour-ischemia-only group, and decreased further after 9 hours of ischemia and 2 hours of reperfusion. Light- and electron microscopic findings correlated strongly with the values of muscle fiber viability: lesser viability values represented higher degree of ultrastructural injury while similar viability results corresponded to similar morphological injury. Muscle fiber viability was capable of accurately determining the degree of muscle injury in our rat model. Our method might therefore be useful in clinical settings in the diagnostics of acute ischemic muscle injury

    A randomized controlled trial on the effectiveness of strength training on clinical and muscle cellular outcomes in patients with prostate cancer during androgen deprivation therapy: rationale and design

    Get PDF
    Background Studies indicate that strength training has beneficial effects on clinical health outcomes in prostate cancer patients during androgen deprivation therapy. However, randomized controlled trials are needed to scientifically determine the effectiveness of strength training on the muscle cell level. Furthermore, close examination of the feasibility of a high-load strength training program is warranted. The Physical Exercise and Prostate Cancer (PEPC) trial is designed to determine the effectiveness of strength training on clinical and muscle cellular outcomes in non-metastatic prostate cancer patients after high-dose radiotherapy and during ongoing androgen deprivation therapy. Methods/design Patients receiving androgen deprivation therapy for 9-36 months combined with external high-dose radiotherapy for locally advanced prostate cancer are randomized to an exercise intervention group that receives a 16 week high-load strength training program or a control group that is encouraged to maintain their habitual activity level. In both arms, androgen deprivation therapy is continued until the end of the intervention period. Clinical outcomes are body composition (lean body mass, bone mineral density and fat mass) measured by Dual-energy X-ray Absorptiometry, serological outcomes, physical functioning (muscle strength and cardio-respiratory fitness) assessed with physical tests and psycho-social functioning (mental health, fatigue and health-related quality of life) assessed by questionnaires. Muscle cellular outcomes are a) muscle fiber size b) regulators of muscle fiber size (number of myonuclei per muscle fiber, number of satellite cells per muscle fiber, number of satellite cells and myonuclei positive for androgen receptors and proteins involved in muscle protein degradation and muscle hypertrophy) and c) regulators of muscle fiber function such as proteins involved in cellular stress and mitochondrial function. Muscle cellular outcomes are measured on muscle cross sections and muscle homogenate from muscle biopsies obtained from muscle vastus lateralis. Discussion The findings from the PEPC trial will provide new knowledge on the effects of high-load strength training on clinical and muscle cellular outcomes in prostate cancer patients during androgen deprivation therapy. Trial registration ClinicalTrials.gov: NCT0065822

    Intensive computer-based phonics training in the educational setting of children with Down syndrome : An explorative study

    No full text
    Children with Down syndrome (DS) using intensive computer-based phonics (GraphoGame, GG) were studied. The children's independence and improvement in phonological processing, letter knowledge, word decoding, and reading strategies were investigated. Seventeen children (5-16 years) with DS participated in a crossover design through 8 weeks (one period), with three test sessions separated by 4 weeks. Children were randomly assigned to GG intervention or regular schooling (RS). All children completed one period and eight children completed two periods. A majority gradually became independent in managing GG. At the group level, very little benefit was found from working with GG. At the individual level, several children with mild to severe intellectual disabilities showed increased decoding of trained words. After one period of GG and RS, an increase in alphabetically decoded words was found. The finding suggests that when individual challenges are considered, computer-based phonics may be beneficial for children with DS in their educational setting

    Prevalence of swallowing dysfunction screened in Swedish cohort of COPD patients

    No full text
    Margareta Gonzalez Lindh,1,2 Monica Blom Johansson,1 Margareta Jennische,1 Hirsh Koyi2,3 1Department of Neuroscience, Speech and Language Pathology, Uppsala University, Uppsala, Sweden; 2Centre for Research and Development (CFUG), Uppsala University, County Council of Gävleborg, Gävle, Sweden; 3Department of Respiratory Medicine, Gävle Hospital, Gävle, Sweden Background: COPD is a common problem associated with morbidity and mortality. COPD may also affect the dynamics and coordination of functions such as swallowing. A misdirected swallow may, in turn, result in the bolus entering the airway. A growing body of evidence suggests that a subgroup of people with COPD is prone to oropharyngeal dysphagia. The aim of this study was to evaluate swallowing dysfunction in patients with stable COPD and to determine the relation between signs and symptoms of swallowing dysfunction and lung function (forced expiratory volume in 1 second percent predicted).Methods: Fifty-one patients with COPD in a stable phase participated in a questionnaire survey, swallowing tests, and spirometry. A post-bronchodilator ratio of the forced expiratory volume in 1 second/best of forced vital capacity and vital capacity <0.7 was used to define COPD. Swallowing function was assessed by a questionnaire and two swallowing tests (water and cookie swallow tests).Results: Sixty-five percent of the patients reported subjective signs and symptoms of swallowing dysfunction in the questionnaire and 49% showed measurable ones in the swallowing tests. For the combined subjective and objective findings, 78% had a coexisting swallowing dysfunction. No significant difference was found between male and female patients.Conclusion: Swallowing function is affected in COPD patients with moderate to severe airflow limitation, and the signs and symptoms of this swallowing dysfunction were subjective, objective, or both. Keywords: deglutition, deglutition disorders, swallowing, COPD, speech-language pathologis

    Crystal structure of bis{(di- i

    No full text

    Super-resolution 3D maps to study the antisecretory factor's effects on different GABAa receptor subunits in rat cerebellar granule cells in vitro

    No full text
    The Antisecretory Factor (AF) is an endogenous protein that inhibits intestinal hypersecretion and various inflammation disorders in vivo. AF has been detected in many mammalian tissues and plasma, but its mechanisms of action are essentially unknown. Previously, we studied the pharmacological action of the AF on GABAA receptors in cerebellar granule cells, comparing the electrophysiological response evoked by two-photon mediated release of caged GABA compounds before and after the administration of AF-16, a 16 amino acids long peptide obtained from the amino-terminal end of the AF protein. After the treatment with AF-16, we observed an increase in the GABAA receptor responses, particularly in those containing the α6 subunit. To figure out the interactions of AF with GABAA receptors in the same cellular model (cerebellar granule cells), we combined immunofluorescence subunits’ staining with confocal and super-resolution microscopy. In particular, we took advantage of an innovative imaging technique that combines stimulated emission depletion (STED) with fluorescence lifetime microscopy (FLIM) to collect super-resolution 3D maps of different subunits distributed on the neuron cell membrane. We explored different approaches to analyze super-resolution fluorescence images obtained by labeling α1 and α6 subunits before and after 1-hour incubation with AF-16. Comparing pre- and post-treatment maps, we found differences in how different subunit populations respond to AF treatment. We critically analyzed these new experimental findings with our previous electrophysiological data to widen the knowledge of the mechanisms of interaction between GABAA receptor subunits and AF protein
    corecore