15,708 research outputs found
Field Tests of Kairomones to Increase Parasitism of Spruce Budworm (Lepidoptera: Tortricidae) Eggs by \u3ci\u3eTrichogramma\u3c/i\u3e Spp. (Hymenoptera: Trichogrammatidae)
Hexane extracts of spruce budworm, Choristoneura fumiferana, moth scales, applied at 0.04 moth-gram equivalents/branch and at 0.06 moth-gram equivalents/tree, failed to increase parasitism rates of Trichogramma spp. in two cutover spruce-fir stands in Maine. Releasing Maine-strain T. minutum apparently increased parasitism rates about 20-fold. However, application of kairomone extracts to whole branches and to upper crowns of small trees may have interfered with host-searching behaviors of Trichogramma parasitoids
On-orbit operational scenarios, tools and techniques
This paper concentrates on methods and techniques used to develop operational scenarios for orbital missions, including development of models to analyze alternatives, modification of tools and refinement of techniques for future missions. Many of these tools and techniques have been derived from previous tools, techniques and experience from the Orbital Maneuvering Vehicle (OMV) program. Results from use of these tools show the current Cargo Transfer Vehicle nominal mission scenario, with 95 discrete events defined for the CTV mission from the NLS Heavy Lift Launch Vehicle (HLLV) to Space Station Freedom (SSF)
Designing an Adaptive Interface: Using Eye Tracking to Classify How Information Usage Changes Over Time in Partially Automated Vehicles
While partially automated vehicles can provide a range of benefits, they also bring about new Human Machine Interface (HMI) challenges around ensuring the driver remains alert and is able to take control of the vehicle when required. While humans are poor monitors of automated processes, specifically during ‘steady state’ operation, presenting the appropriate information to the driver can help. But to date, interfaces of partially automated vehicles have shown evidence of causing cognitive overload. Adaptive HMIs that automatically change the information presented (for example, based on workload, time or physiologically), have been previously proposed as a solution, but little is known about how information should adapt during steady-state driving. This study aimed to classify information usage based on driver experience to inform the design of a future adaptive HMI in partially automated vehicles. The unique feature of this study over existing literature is that each participant attended for five consecutive days; enabling a first look at how information usage changes with increasing familiarity and providing a methodological contribution to future HMI user trial study design. Seventeen participants experienced a steady-state automated driving simulation for twenty-six minutes per day in a driving simulator, replicating a regularly driven route, such as a work commute. Nine information icons, representative of future partially automated vehicle HMIs, were displayed on a tablet and eye tracking was used to record the information that the participants fixated on. The results found that information usage did change with increased exposure, with significant differences in what information participants looked at between the first and last trial days. With increasing experience, participants tended to view information as confirming technical competence rather than the future state of the vehicle. On this basis, interface design recommendations are made, particularly around the design of adaptive interfaces for future partially automated vehicles
Consensus Acceleration in Multiagent Systems with the Chebyshev Semi-Iterative Method
We consider the fundamental problem of reaching consensus in multiagent systems; an operation required in many applications such as, among others, vehicle formation and coordination, shape formation in modular robotics, distributed target tracking, and environmental modeling. To date, the consensus problem (the problem where agents have to agree on their reported values) has been typically solved with iterative decentralized algorithms based on graph Laplacians. However, the convergence of these existing consensus algorithms is often too slow for many important multiagent applications, and thus they are increasingly being combined with acceleration methods. Unfortunately, state-of-the-art acceleration techniques require parameters that can be optimally selected only if complete information about the network topology is available, which is rarely the case in practice. We address this limitation by deriving two novel acceleration methods that can deliver good performance even if little information about the network is available. The first proposed algorithm is based on the Chebyshev semi-iterative method and is optimal in a well defined sense; it maximizes the worst-case convergence speed (in the mean sense) given that only rough bounds on the extremal eigenvalues of the network matrix are available. It can be applied to systems where agents use unreliable communication links, and its computational complexity is similar to those of simple Laplacian-based methods. This algorithm requires synchronization among agents, so we also propose an asynchronous version that approximates the output of the synchronous algorithm. Mathematical analysis and numerical simulations show that the convergence speed of the proposed acceleration methods decrease gracefully in scenarios where the sole use of Laplacian-based methods is known to be impractical
Using fractals and power laws to predict the location of mineral deposits
Around the world the mineral exploration industry is interested in getting that small increase in probability measure on the earth's surface of where the next large undiscovered deposit might be found. In particular WMC Resources Ltd has operations world wide looking for just that edge in the detection of very large deposits of, for example, gold. Since the pioneering work of Mandelbrot, geologists have been familiar with the concept of fractals and self similarity over a few orders of magnitude for geological features. This includes the location and size of deposits within a particular mineral province. Fractal dimensions have been computed for such provinces and similarities of these aggregated measures between provinces have been noted. This paper explores the possibility of making use of known information to attempt the inverse process. That is, from lesser dimensional measures of a mineral province, for example, fractal dimension or more generally multi-fractal measures, is it possible to infer, even with small increase in probability, where the unknown (preferably large) deposits might be located
A SEQUENTIAL CHOICE MODEL OF RECREATION BEHAVIOR
The travel cost model is the standard model used in the recreation demand literature. This model assumes that the decision on the number of trips to a particular site in a given period (a season, for example) is determined at the beginning of the period. For certain types of recreation activity, this decision may be more appropriately modeled as a sequential process, in which the decision of whether or not to take each additional trip is made after previous trips have occurred. This decision is dependent on the realization of random variables on previous trips as well as travel costs. A model is developed in which the choice of a discrete number of sequentially chosen trips to a given site is specified as function of site-specific variables and variables realized on previous trips. This models advantage over the traditional travel cost model is that it specifies discrete, nonnegative integer values for the number of trips and allows intraseasonal effects to determine the probability of taking each additional trip.Resource /Energy Economics and Policy,
Transient excitation and data processing techniques employing the fast fourier transform for aeroelastic testing
The development of testing techniques useful in airplane ground resonance testing, wind tunnel aeroelastic model testing, and airplane flight flutter testing is presented. Included is the consideration of impulsive excitation, steady-state sinusoidal excitation, and random and pseudorandom excitation. Reasons for the selection of fast sine sweeps for transient excitation are given. The use of the fast fourier transform dynamic analyzer (HP-5451B) is presented, together with a curve fitting data process in the Laplace domain to experimentally evaluate values of generalized mass, model frequencies, dampings, and mode shapes. The effects of poor signal to noise ratios due to turbulence creating data variance are discussed. Data manipulation techniques used to overcome variance problems are also included. The experience is described that was gained by using these techniques since the early stages of the SST program. Data measured during 747 flight flutter tests, and SST, YC-14, and 727 empennage flutter model tests are included
Predation by Amphibians and Small Mammals on the Spruce Budworm (Lepidoptera: Tortricidae)
Stomach-content analyses of pitfall-trapped amphibians and small mammals showed that the eastern American toad, Bujo americanus americanus, and the wood frog, Rana sylvatica, preyed on late instars and moths of the spruce budworm, Choristoneura fumiferana. The spotted salamander, Ambystoma maculatum, and the masked shrew, Sorex cinereus, also preyed on late instars of the spruce budworm
Recommended from our members
Behaviour change at work: Empowering energy efficiency in the workplace through user-centred design
Copyright @ 2011 University of California eScholarship RepositoryCO2 emissions from non-domestic buildings - primarily workplaces - make up 18 percent of the UK's carbon footprint. A combination of technology advances and behavioural changes have the potential to make significant impact, but interventions have often been planned in ways which do not take into account the needs, levels of understanding and everyday behavioural contexts of building users - and hence do not achieve the hoped-for success.This paper provides a brief introduction to the Empower project, a current industrial-academic collaboration in the UK which is applying methods from user-centred design practice to understand diverse users' needs, priorities, mental models of energy and decision-making heuristics - as well as the affordances available to them - in a number of office buildings. We are developing and trialling a set of low-cost, simple software interventions tailored to multiple user groups with different degrees of agency over their energy use, which seek to influence more energy efficient behaviour at work in areas such as HVAC, lighting and equipment use. The project comprises an ethnographic research phase, a participatory design programme involving building users in the design of interventions, and iterative trials in a large office building in central London
- …