3,707 research outputs found

    Integration in the Absence of Institutions: China-North Korea Cross-Border Exchange

    Get PDF
    Theory tells us that weak rule of law and institutions deter cross-border integration, deter investment relative to trade, and inhibit trade finance. Drawing on a survey of more than 300 Chinese enterprises that are doing or have done business in North Korea, we consider how informal institutions have addressed these problems in a setting in which rule of law and institutions are particularly weak. Given the apparent reliance on hedging strategies, the rapid growth in exchange witnessed in recent years may prove self-limiting, as the effectiveness of informal institutions erode and the risk premium rises. Institutional improvement could have significant welfare implications, affecting the volume, composition, and financial terms of cross-border exchange.economic integration, property rights, institutions, transition, China, North Korea

    Automation of NLO QCD and EW corrections with Sherpa and Recola

    Full text link
    This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa+Recola framework allows for the computation of -in principle- any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. In addition to fixed-order computations, when considering QCD corrections, all functionalities of Sherpa, i.e. particle decays, QCD parton showers, hadronisation, underlying events, etc. can be used in combination with Recola. This is demonstrated by the merging and matching of one-loop QCD matrix elements for Drell-Yan production in association with jets to the parton shower. The implementation is fully automatised, thus making it a perfect tool for both experimentalists and theorists who want to use state-of-the-art predictions at NLO accuracy.Comment: 38 pages, 29 figures. Matches the published version (few typos corrected

    On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix

    Get PDF
    This paper addresses the extension of the factorisation of a Hermitian matrix by an eigenvalue decomposition (EVD) to the case of a parahermitian matrix that is analytic at least on an annulus containing the unit circle. Such parahermitian matrices contain polynomials or rational functions in the complex variable z, and arise e.g. as cross spectral density matrices in broadband array problems. Specifically, conditions for the existence and uniqueness of eigenvalues and eigenvectors of a parahermitian matrix EVD are given, such that these can be represented by a power or Laurent series that is absolutely convergent, at least on the unit circle, permitting a direct realisation in the time domain. Based on an analysis on the unit circle, we prove that eigenvalues exist as unique and convergent but likely infinite-length Laurent series. The eigenvectors can have an arbitrary phase response, and are shown to exist as convergent Laurent series if eigenvalues are selected as analytic functions on the unit circle, and if the phase response is selected such that the eigenvectors are Hƶlder continuous with Ī±>Ā½ on the unit circle. In the case of a discontinuous phase response or if spectral majorisation is enforced for intersecting eigenvalues, an absolutely convergent Laurent series solution for the eigenvectors of a parahermitian EVD does not exist. We provide some examples, comment on the approximation of a parahermitian matrix EVD by Laurent polynomial factors, and compare our findings to the solutions provided by polynomial matrix EVD algorithms

    A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish

    Get PDF
    BACKGROUND: The genomic organisation of the Major Histocompatibility Complex (MHC) varies greatly between different vertebrates. In mammals, the classical MHC consists of a large number of linked genes (e.g. greater than 200 in humans) with predominantly immune function. In some birds, it consists of only a small number of linked MHC core genes (e.g. smaller than 20 in chickens) forming a minimal essential MHC and, in fish, the MHC consists of a so far unknown number of genes including non-linked MHC core genes. Here we report a survey of MHC genes and their paralogues in the zebrafish genome. RESULTS: Using sequence similarity searches against the zebrafish draft genome assembly (Zv4, September 2004), 149 putative MHC gene loci and their paralogues have been identified. Of these, 41 map to chromosome 19 while the remaining loci are spread across essentially all chromosomes. Despite the fragmentation, a set of MHC core genes involved in peptide transport, loading and presentation are still found in a single linkage group. CONCLUSION: The results extend the linkage information of MHC core genes on zebrafish chromosome 19 and show the distribution of the remaining MHC genes and their paralogues to be genome-wide. Although based on a draft genome assembly, this survey demonstrates an essentially fragmented MHC in zebrafish

    Real bad grammar: realistic grammatical description with grammaticality

    Get PDF
    Sampson (this issue) argues for a concept of ā€œrealistic grammatical descriptionā€ in which the distinction between grammatical and ungrammatical sentences is irrelevant. In this article I also argue for a concept of ā€œrealistic grammatical descriptionā€ but one in which a binary distinction between grammatical and ungrammatical sentences is maintained. In distinguishing between the grammatical and ungrammatical, this kind of grammar differs from that proposed by Sampson, but it does share the important property that invented sentences have no role to play, either as positive or negative evidence

    Investigation of a polynomial matrix generalised EVD for multi-channel Wiener filtering

    Get PDF
    State of the art narrowband noise cancellation techniques utilise the generalised eigenvalue decomposition (GEVD) for multichannel Wiener filtering which can be applied to independent frequency bins in order to achieve broadband processing. Here we investigate the extension of the GEVD to broadband, polynomial matrices, akin to strategies that have already been developed by McWhirter et. al on the polynomial matrix eigenvalue decomposition (PEVD)
    • ā€¦
    corecore