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Abstract. State of the art narrowband noise cancellation techniques utilise the generalised
eigenvalue decomposition (GEVD) for multichannel Wiener filtering which can be applied to
independent frequency bins in order to achieve broadband processing. Here we investigate
the extension of the GEVD to broadband, polynomial matrices, akin to strategies that have
already been developed by McWhirter et. al on the polynomial matrix eigenvalue decomposition
(PEVD).

Extended Summary

Motivation. Recently the scalar generalised eigenvalue decomposition (GEVD) has been
utilised to enable low rank approximation in multichannel Wiener filters (MWF) [3,8]. At the
stage where the signal only covariance matrix is estimated, the estimation process artificially
increases the rank of the matrix. To avoid using matrices with higher rank than required,
the covariance matrix gets replaced by a low rank approximation [3]. Methods using both the
conventional eigenvalue decomposition (EVD) and GEVD have been explored in [8] with results
showing the GEVD based approach performs better as it effectively selects the modes with the
highest SNR.

For a broadband array vector x[n], where explicit lags τ need to be taken into accout, the
space-time matrix is defined as R[τ ] = E

{

x[n]xH[n− τ ]
}

. Its z-transform R(z) •—◦ R[τ ]
forms a parahermitian polynomial matrix [9], for which a generalisation from the EVD to a
polynomial EVD (PEVD) exist [5]. In this contribution, we extend the PEVD to a polynomial
version of the GEVD (PGEVD) in order to directly address the broadband MWF problem.
Wiener filters have previously been formulated using polynomial matrix techniques [6] but
initially could not be solved due to an absence of tools. We here completement the polynomial
Wiener filter solution in [12] by a PGEVD approach.

Generalised Eigenvalue Decomposition. The GEVD solves the problem of R1v = dR2v,
v 6= 0, where v is an eigenvector of the pencil R1 − dR2 [2]. In matrix form,

R1V = R2VD , (1)

the diagonal matrix D contains the generalised eigenvalues and V holds the corresponding
generalised eigenvectors. When the generalised eigenvectors are applied to R1 and R2 we get

VHR1V = D , (2)

VHR2V = I , (3)
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where I is the identity. From the alternative form VHR−1
2 R1V = D to (2) and (3) it is evident

that R−1
2 R1 is no longer Hermitian and therefore V not guaranteed to be unitary, even if —

as in the case of MWF [3,8] — R1 and R2 are Hermitian covariance matrices.

Amongst a number of options to calculate the GEVD or joint diagonalisation of Hermitian
matrices R1 and R2 [2] is a Cholesky-based approach. In a first step, a Cholesky decomposition
R2 = LLH, with L lower left triangular, is determined. In a second step, an EVD is performed
on the intermediate Hermitian matrix C = L−1R1L

−H = YDYH, such that D contains the
generalised eigenvalues and the generalised eigenvectors are the columns of V = L−HY.

Extension of GEVD to Polynomial Matrices. Extending the GEVD in (1) to polynomial
parahermitian matrices Ri(z), i = {1, 2}, leads to a joint diagonalisation problem akin to (2)
and (3)

Ṽ (z)R1(z)V (z) = D(z) , Ṽ (z)R2(z)V (z) = I , (4)

where D(z) contains the polynomial generalised eigenvectors. The operator {̃·} denotes the
parahermitian transpose, which includes both a Hermitian transpose and time reversal; this
can be seen as the polynomial equivalent of the Hermitian transpose in the scalar case [9]. The
factorisations in (4) can be shown to exist if the PEVDs of Ri(z) exist [4], and if R2(z) is
invertible. Due to non-uniqueness of the PEVD [1], the generalised polynomial eigenvectors in
V (z) can at the very least be arbitrarily delayed w.r.t. each other, leading to a variability in
their polynomial degree.

For the computation of V (z) and D(z), a two-step Cholesky-style approach can be per-
formed. The first step uses the PEVD R2(z) = Q̃2(z)D2(z)Q2(z) and the spectral fac-

torisation [10] of D2(z) into its minimum and maximum phase components, D
(+)
2 (z) and

D
(−)
2 (z) = D̃

(+)

2 (z). Therefore the factor L(z) = Q̃2(z)D
(+)
2 (z) is now not lower left trian-

gular but easily inverted [11], such that L−1(z) =
(

D
(+)
2 (z)

)−1

Q2(z). For the second step,

the PEVD C(z) = L−1(z)R1(z)L̃
−1
(z) = Q(z)D(z)Q̃(z) is calculated. This leads to the

polynomial generalised eigenvalues on the diagonal of D(z) and the polynomial generalised

eigenvectors in V (z) = L̃
−1
(z)Q(z), noting a possible order reduction due to ambiguity [1].

Results. As an example of a PGEVD, the source model described in [7] generates two para-
hermitian matrices R1(z) and R2(z) as shown in Fig. 1. The sequential matrix diagonalisation
(SMD) [7] PEVD algorithm is used to decompose R2(z) and to calculate the intermediate
matrix C(z). The determined V (z) is then applied to both R1(z) and R2(z), leading to the
jointly diagonalised systems in Fig. 2, closely approximating (4).

Conclusions and Full Paper. This summary has introduced the ideas and motivation be-
hind a polynomial matrix generalised eigenvalue decomposition and some initial results from
the Cholesky type method based on the polynomial EVD.
The final paper will provide details on the approach and numerical results for joint diagonal-
isation over an ensemble of differently conditioned parahermitian matrices. These results will
be applied to broadband multichannel Wiener filtering, with a comparison to the narrowband
GEVD applied in independent frequency bins. We also aim to generalise advantages in the
GEVD to the polynomial case if R1(z) has low rank [3], which can be expected to provide
simplifications over the polynomial Wiener approach outlined but not solved in [6].
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Fig. 1: Space-time covariance matrix (a) R1[τ ] ◦—• R1(z) and (b) R2[τ ] ◦—• R2(z), only
showing the absolute value of coefficients.
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Fig. 2: Results of joint diagonalisation by generalised modal matrix V (z) •—◦ V[τ ] for (a)
R1[τ ] ◦—• R1(z) and (b) R2[τ ] ◦—• R2(z), only showing the absolute value of coefficients.
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