76 research outputs found

    The hemisessile lifestyle and feeding strategies of Iosactis vagabunda (Actiniaria, Iosactiidae), a dominant megafaunal species of the Porcupine Abyssal Plain

    Get PDF
    Iosactis vagabunda Riemann-Zürneck, 1997 (Actiniaria, Iosactiidae) is a small endomyarian anemone, recently quantified as the greatest contributor to megafaunal density (48%; 2372 individuals ha−1) on the Porcupine Abyssal Plain (PAP). We used time-lapse photography to observe 18 individuals over a period of approximately 20 months at 8-h intervals, and one individual over 2 weeks at 20-mine intervals, and report observations on its burrowing activity, and both deposit and predatory feeding behaviours. We recorded the apparent subsurface movement of an individual from an abandoned burrow to a new location, and burrow creation there. Raptorial deposit feeding on settled phytodetritus particles was observed, as was predation on a polychaete 6-times the estimated biomass of the anemone. Though essentially unnoticed in prior studies of the PAP, I. vagabunda may be a key component of the benthic community, and may make a critical contribution to the carbon cycling at the PAP long-term time-series study site

    Subtle variation in abyssal terrain induces significant change in benthic megafaunal abundance, diversity, and community structure

    Get PDF
    Bathymetric gradients in the deep sea are known to affect key benthic community characteristics such as diversity. However, most studies investigate large-scale bathymetric variation, while habitat heterogeneity related to modest bathymetric variation has generally been overlooked because of limitations to sampling technology. We investigate the role of modest bathymetric variation (~10 m water depth intervals) on an abyssal hill, and horizontal variation at the 0.1–10 km scale, in the structuring of abyssal megafaunal assemblages. We assess numerical density, biomass density, diversity, and assemblage composition using seabed photographs captured with an autonomous underwater vehicle and sediment characteristics determined from cores. We detect significant differences in sediment particle size and organic carbon content, in relation to modest topographic elevation, with a greater fraction of fine particles and organic carbon on the abyssal plain than the hill. Total megafaunal numerical and biomass density, diversity, and the numerical densities of feeding groups were significantly different with modest topographic elevation; similarly, megafaunal composition varied significantly between ~10 m depth intervals. In relation to mesoscale horizontal variation, we also record significant differences between megabenthic communities in two abyssal plain areas with no significant differences in measured sedimentary characteristics and only a 2 m difference in water depth. Differences in these communities were detected in terms of dominance, assemblage composition by density and biomass, and numerical densities of feeding groups. These observations strongly indicate that previous general concepts of the abyssal environment greatly underestimate this mesoscale heterogeneity, such that beta- and gamma-diversity in the abyss may be higher than estimated. Importantly, these results also have clear implications for the design and interpretation of environmental survey and monitoring programmes in the abyss

    Harnessing the 4DEE Framework to Redesign an Introductory Ecology Course in a Changing Higher Education Landscape

    Get PDF
    As higher education undergoes rapid and fundamental change, eco-educators need to be prepared to promote the inclusion of the ecological sciences in the biological sciences curriculum of the future. Here, we present an instructional alignment for an introductory ecology course, which is informed by and integrated with the Four-Dimensional Ecology Education (4DEE) Framework. Our instructional alignment was created collaboratively among faculty involved in teaching the course and emphasizes the relevance and utility of the ecological sciences. We believe that this approach positions the ecological sciences for continued success and inclusion in the biological sciences curriculum of tomorrow

    Harnessing the Four-Dimensional Ecology Education Framework to redesign an introductory ecology course in a changing higher education landscape

    Get PDF
    As higher education undergoes rapid and fundamental change, eco-educators need to be prepared to promote the inclusion of the ecological sciences in the biological sciences curriculum of the future. Here, we present an instructional alignment for an introductory ecology course, which is informed by and integrated with the Four-Dimensional Ecology Education (4DEE) Framework. Our instructional alignment was created collaboratively among faculty involved in teaching the course and emphasizes the relevance and utility of the ecological sciences. We believe that this approach positions the ecological sciences for continued success and inclusion in the biological sciences curriculum of tomorrow

    Abyssal hills - hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea

    Get PDF
    Abyssal hills are the most abundant landform on Earth, yet the ecological impact of the resulting habitat heterogeneity on the wider abyss is largely unexplored. Topographic features are known to influence food availability and the sedimentary environment in other deep-sea habitats, in turn affecting the species assemblage and biomass. To assess this spatial variation, benthic assemblages and environmental conditions were compared at four hill and four plain sites at the Porcupine Abyssal Plain. Here we show that differences in megabenthic communities on abyssal hills and the adjacent plain are related to environmental conditions, which may be caused by local topography and hydrodynamics. Although these hills may receive similar particulate organic carbon flux (food supply from the surface ocean) to the adjacent plain, they differ significantly in depth, slope, and sediment particle size distribution. We found that megafaunal biomass was significantly greater on the hills (mean 13.45 g m−2, 95% confidence interval 9.25–19.36 g m−2) than the plain (4.34 g m−2, 95% CI 2.08–8.27 g m−2; ANOVA F(1, 6) = 23.8, p < 0.01). Assemblage and trophic compositions by both density and biomass measures were significantly different between the hill and plain, and correlated with sediment particle size distributions. Hydrodynamic conditions responsible for the local sedimentary environment may be the mechanism driving these assemblage differences. Since the ecological heterogeneity provided by hills in the abyss has been underappreciated, regional assessments of abyssal biological heterogeneity and diversity may be considerably higher than previously thought

    Response of deep-sea deposit-feeders to detrital inputs: A comparison of two abyssal time-series sites

    Get PDF
    Biological communities on the abyssal plain are largely dependent on detritus from the surface ocean as their main source of energy. Seasonal fluctuations in the deposition of that detritus cause temporal variations in the quantity and quality of food available to these communities, altering their structure and the activity of the taxa present. However, direct observations of energy acquisition in relation to detritus availability across megafaunal taxa in abyssal communities are few. We used time-lapse photography and coincident measurement of organic matter flux from water column sediment traps to examine the impact of seasonal detrital inputs on resource acquisition by the deposit feeding megafauna assemblages at two sites: Station M (Northeast Pacific, 4000 m water depth) and the Porcupine Abyssal Plain Sustained Observatory (PAP-SO, Northeast Atlantic 4850 m water depth). At Station M, studied over 18-months, the seasonal particle flux was followed by a salp deposition event. At that site, diversity in types of deposit feeding was related to seabed cover by detritus. At PAP-SO, studied over 30 months, the seasonal particle flux consisted of two peaks annually. While the two study sites were similar in mean flux (~8.0 mgC m−2 d−1), the seasonality in the flux was greater at PAP-SO. The mean overall tracking at PAP-SO was five times that of Station M (1.9 and 0.4 cm2 h−1, respectively); both are likely underestimated because tracking by some common taxa at both sites could not be quantified. At both sites, responses of deposit-feeding megafauna to the input of detritus were not consistent across the taxa studied. The numerically-dominant megafauna (e.g. echinoids, large holothurians and asteroids) did not alter their deposit feeding in relation to the seasonality in detrital supply. Taxa for which deposit feeding occurrence or rate were correlated to seasonality in particle flux were relatively uncommon (e.g. enteropneusta), known to cache food (e.g. echiurans), or to be highly selective for fresh detritus (e.g. the holothurian Oneirophanta mutabilis). Thus, the degree of seasonality in deposit feeding appeared to be taxon-specific and related to natural history characteristics such as feeding and foraging modes

    Improving the estimation of deep-sea megabenthos biomass: dimension to wet weight conversions for abyssal invertebrates

    Get PDF
    Deep-sea megafaunal biomass has typically been assessed by sampling with benthic sledges and trawls, but non-destructive methods, particularly photography, are becoming increasingly common. Estimation of individual wet weight in seabed photographs has been achieved using equations obtained from measured trawl-caught specimens for a limited number of taxa. However, a lack of appropriate conversion factors has limited estimation across taxa encompassing whole communities. Here we compile relationships between measured body dimensions and preserved wet weights for a comprehensive catalogue of abyssal epibenthic megafauna, using ~47,000 specimens from the Porcupine Abyssal Plain (NE Atlantic) housed in the Discovery Collections. The practical application of the method is demonstrated using an extremely large dataset of specimen measurements from seabed photographs taken in the same location. We also collate corresponding field data on fresh wet weight, to estimate the impact of fixation in formalin and preservation in industrial denatured alcohol on the apparent biomass. Taxa with substantial proportions of soft tissues lose 35 to 60% of their wet weight during preservation, while those with greater proportions of hard tissues lose 10 to 20%. Our total estimated fresh wet weight biomass of holothurians and cnidarians in the photographic survey was ~20 times the previous estimates of total invertebrate biomass based on trawl catches. This dramatic uplift in megabenthic biomass has significant implications for studies of standing stocks, community metabolism, and numerical modelling of benthic carbon flows

    Automated classification of fauna in seabed photographs: The impact of training and validation dataset size, with considerations for the class imbalance

    Get PDF
    Machine learning is rapidly developing as a tool for gathering data from imagery and may be useful in identifying (classifying) visible specimens in large numbers of seabed photographs. Application of an automated classification workflow requires manually identified specimens to be supplied for training and validating the model. These training and validation datasets are generally generated by partitioning the available manual identified specimens; typical ratios of training to validation dataset sizes are 75:25 or 80:20. However, this approach does not facilitate the desired scalability, which would require models to successfully classify specimens in hundreds of thousands to millions of images after training on a relatively small subset of manually identified specimens. A second problem is related to the ‘class imbalance’, where natural community structure means that fewer specimens of rare morphotypes are available for model training. We investigated the impact of independent variation of the training and validation dataset sizes on the performance of a convolutional neural network classifier on benthic invertebrates visible in a very large set of seabed photographs captured by an autonomous underwater vehicle at the Porcupine Abyssal Plain Sustained Observatory. We tested the impact of increasing training dataset size on specimen classification in a single validation dataset, and then tested the impact of increasing validation set size, evaluating ecological metrics in addition to computer vision metrics. Computer vision metrics (recall, precision, F1-score) indicated that classification improved with increasing training dataset size. In terms of ecological metrics, the number of morphotypes recorded increased, while diversity decreased with increasing training dataset size. Variation and bias in diversity metrics decreased with increasing training dataset size. Multivariate dispersion in apparent community composition was reduced, and bias from expert-derived data declined with increasing training dataset size. In contrast, classification success and resulting ecological metrics did not differ significantly with varying validation dataset sizes. Thus, the selection of an appropriate training dataset size is key to ensuring robust automated classifications of benthic invertebrates in seabed photographs, in terms of ecological results, and validation may be conducted on a comparatively small dataset with confidence that similar results will be obtained in a larger production dataset. In addition, our results suggest that automated classification of less common morphotypes may be feasible, providing that the overall training dataset size is sufficiently large. Thus, tactics for reducing class imbalance in the training dataset may produce improvements in the resulting ecological metrics

    Deep-sea sponge aggregations (Pheronema carpenteri) in the Porcupine Seabight (NE Atlantic) potentially degraded by demersal fishing

    Get PDF
    Deep-sea sponge aggregations are widely recognised as features of conservation interest and vulnerable marine ecosystems that may particularly require protection from the impact of commercial bottom trawl fishing. In 2011 we revisited deep-sea sponge aggregations in the Porcupine Seabight (NE Atlantic, c. 1200 m water depth) originally described by Rice, Thurston and New (1990, Prog. Oceanogr. 24: 179-196) from surveys in 1983/4. Using an off-bottom towed camera system, broadly comparable to the bottom-towed system originally employed, we resurveyed four key transects detailed in that publication. In the intervening years, there has been a substantial increase in deep-water fishing activity; our primary objectives were therefore to establish the continued presence of Pheronema carpenteri (Hexactinellida, Pheronematidae), the current status of the sponge population, and whether there was any evidence of bottom trawl fishing impact on the sponges and their associated fauna. We noted a very substantial reduction in the standing stock of sponges: in Rice et al.'s (loc. cit.) peak abundance depth range (1210 – 1250 m) numerical density declined from 1.09 to 0.03 ind m-2, and biomass density from 246 to 4 gwwt m-2, between the surveys. Our assessment of available vessel monitoring data suggested that commercial bottom trawling had been occurring in the area, with some indication of focussed effort in the sponge's bathymetric range. We also recorded the presence of multiple apparent seafloor trawl marks on two of the transects. Despite the potential disturbance, the presence of sponge aggregations continued to exert a statistically significant positive influence on the diversity of the local megafaunal assemblage. Similarly, faunal composition also exhibited a statistically significant trend with P. carpenteri numerical density. Megafaunal numerical density, particularly that of ascideans, appeared to be enhanced in the core of Rice et al.'s (loc. cit.) peak abundance depth range potentially reflecting the residual effect of sponge spicule mats. Our observations were suggestive of a substantive impact by bottom trawl fishing; however, a definitive assessment of cause and effect was not possible, being hampered by a lack of temporal studies in the intervening period. Other causes and interpretations were plausible and suggested the need for: (i) a precautionary approach to management, (ii) an improved understanding of sponge natural history, and (iii) temporal monitoring (e.g. seafloor sponge habitat cover)
    • …
    corecore