42 research outputs found

    CUTTING ACROSS TEAM BOUNDARIES: ANTECEDENTS AND IMPLICATIONS OF INDIVIDUAL BOUNDARY SPANNING BEHAVIOR WITHIN CONSULTING TEAMS

    Get PDF
    Boundary spanning activities, or external team processes such as establishing and managing relationships with key external parties to the team, are critical to the success of many organizational work teams. Surprisingly, however, while the performance benefits of team boundary management have been documented in several seminal pieces by Ancona and her colleagues (e.g., Ancona, 1990; Ancona & Caldwell, 1992), little research has directly explored the role of the individual team members in carrying out these critical activities or if performance benefits exist for those engaging in boundary management for their teams. My dissertation addresses these limitations by considering potential predictors and consequences of individual boundary spanning behavior within a team setting. By investigating several personal and motivational antecedents to boundary spanning, I seek to expand previous teams research by predicting why particular team members engage in critical boundary spanning behaviors. Furthermore, complementing existing support for the performance benefits accompanying boundary management at the team level of analysis, I explore the consequences of boundary spanning on individual level outcomes, namely, peer ratings of individual leadership and contributions to the team. Finally, I present two sets of alternative hypotheses postulating a mediating and a moderating role for information network centrality in the boundary spanning behavior-individual outcome relationship. Hypotheses for this dissertation were tested using data from 27 consulting teams, comprised of 171 full-time MBA students. Data were collected primarily through surveys administered to team members at multiple points in time and were analyzed via hierarchical linear modeling, regression, and social network techniques. Results indicated partial support for the predictive value of self-monitoring, proactive personality, and boundary management self-efficacy on an individual's engagement in boundary spanning behaviors within their team. Additionally, boundary spanning directed toward clients and general scanning / scouting of the environment showed strong relationships with peer ratings of individual leadership and contributions, revealing that those engaging in boundary spanning behaviors were highly valued team members. Interestingly, the relationships between these boundary spanning behaviors and individual outcomes were fully mediated by information network centrality. Theoretical and practical implications are discussed

    Lysine: N 6 -Hydroxylase: Stability and Interaction with Ligands

    Full text link
    Recombinant lysine:N 6 -hydroxylase, r IucD, which is isolated as an apoenzyme, requires FAD and NADPH for its catalytic function. r IucD preparations have been found to undergo time-dependent loss in monooxygenase function due to aggregation from the initial tetrameric state to a polytetrameric form(s), a process which is reversible by treatment with thiols. Ligand-in-duced conformational changes in r IucD were assessed by monitoring its CD spectra, DSC profile, and susceptibility to both endo- as well as exopeptidases. The first two methods indicated the absence of any significant conformational change in r IucD, while the last approach revealed that FAD, and its analog ADP, can protect the protein from the deleterious action of proteases. NADPH was partially effective and L-lysine was ineffective in this regard. Deletion of the C-terminal segment, either by treatment with carboxypeptidase Y or by mutagenesis of iucD, results in the loss of r IucD's monooxygenase activity. These findings demonstrate the crucial role of the C-terminal segment in maintaining r IucD in its native conformation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45085/1/10930_2004_Article_409465.pd

    CfA3: 185 Type Ia Supernova Light Curves from the CfA

    Get PDF
    We present multi-band photometry of 185 type-Ia supernovae (SN Ia), with over 11500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously-observed and reduced nearby SN Ia (z < 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of 0.02 mag or better in BVRIr'i' and roughly 0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SN Ia are sufficiently distinct from other SN Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.Comment: Accepted to the Astrophysical Journal. Minor changes from last version. Light curves, comparison star photometry, and passband tables are available at http://www.cfa.harvard.edu/supernova/CfA3

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource

    The evolution of non-small cell lung cancer metastases in TRACERx

    Get PDF
    Metastatic disease is responsible for the majority of cancer-related deaths. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse

    Genomic–transcriptomic evolution in lung cancer and metastasis

    Get PDF
    Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis

    Antibodies against endogenous retroviruses promote lung cancer immunotherapy

    Get PDF
    B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS). Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response

    Implementation of a curriculum management tool : challenges faced by a large Australian university

    No full text
    This paper describes how a large Australian university implemented a new curriculum management tool - UNITS. UNITS is an online repository of unit guides and a curriculum mapping tool. We analyze the advantages of using a university-wide curriculum management tool and the change management processes used to develop the bespoke tool. Staff development in the use of the tool has led to more thoughtful use of learning and teaching activities and better linking of learning outcomes with assessment. To ensure a smooth transition, faculty were supported throughout the process of implementation. Drop-in clinics, video clips, discipline-specific implementation guides as well as a UNITS help page were provided. This paper contributes to the understanding of the challenges in setting up and implementing a large-scale curriculum management tool in a university. Challenges including increased workload, intellectual property concerns, impact on academic freedom and technological issues are discussed.9 page(s
    corecore