202 research outputs found
Efficacy of a ML336 Derivative Against Venezuelan and Eastern Equine Encephalitis Viruses
Currently, there are no licensed human vaccines or antivirals for treatment of or prevention from infection with encephalitic alphaviruses. Because epidemics are sporadic and unpredictable, and endemic disease is common but rarely diagnosed, it is difficult to identify all populations requiring vaccination; thus, an effective post-exposure treatment method is needed to interrupt ongoing outbreaks. To address this public health need, we have continued development of ML336 to deliver a molecule with prophylactic and therapeutic potential that could be relevant for use in natural epidemics or deliberate release scenario for Venezuelan equine encephalitis virus (VEEV). We report findings from in vitro assessments of four analogs of ML336, and in vivo screening of three of these new derivatives, BDGR-4, BDGR-69 and BDGR-70. The optimal dosing for maximal protection was observed at 12.5 mg/kg/day, twice daily for 8 days. BDGR-4 was tested further for prophylactic and therapeutic efficacy in mice challenged with VEEV Trinidad Donkey (TrD). Mice challenged with VEEV TrD showed 100% and 90% protection from lethal disease when treated at 24 and 48 h post-infection, respectively. We also measured 90% protection for BDGR-4 in mice challenged with Eastern equine encephalitis virus. In additional assessments of BDGR-4 in mice alone, we observed no appreciable toxicity as evaluated by clinical chemistry indicators up to a dose of 25 mg/kg/day over 4 days. In these same mice, we observed no induction of interferon. Lastly, the resistance of VEEV to BDGR-4 was evaluated by next-generation sequencing which revealed specific mutations in nsP4, the viral polymerase
Degradation of cognitive timing mechanisms in behavioural variant frontotemporal dementia.
The current study examined motor timing in frontotemporal dementia (FTD), which manifests as progressive deterioration in social, behavioural and cognitive functions. Twenty-patients fulfilling consensus clinical criteria for behavioural variant FTD (bvFTD), 11 patients fulfilling consensus clinical criteria for semantic-variant primary progressive aphasia (svPPA), four patients fulfilling criteria for nonfluent/agrammatic primary progressive aphasia (naPPA), eight patients fulfilling criteria for Alzheimer׳s disease (AD), and 31 controls were assessed on both an externally- and self-paced finger-tapping task requiring maintenance of a regular, 1500 ms beat over 50 taps. Grey and white matter correlates of deficits in motor timing were examined using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). bvFTD patients exhibited significant deficits in aspects of both externally- and self-paced tapping. Increased mean inter-response interval (faster than target tap time) in the self-paced task was associated with reduced grey matter volume in the cerebellum bilaterally, right middle temporal gyrus, and with increased axial diffusivity in the right superior longitudinal fasciculus, regions and tracts which have been suggested to be involved in a subcortical-cortical network of structures underlying timing abilities. This suggests that such structures can be affected in bvFTD, and that impaired motor timing may underlie some characteristics of the bvFTD phenotype
Interrogating a Hexokinase-Selected Small-Molecule Library for Inhibitors of Plasmodium falciparum Hexokinase
This is the published version.Parasites in the genus Plasmodium cause disease throughout the tropic and subtropical regions of the world. P. falciparum, one of the deadliest species of the parasite, relies on glycolysis for the generation of ATP while it inhabits the mammalian red blood cell. The first step in glycolysis is catalyzed by hexokinase (HK). While the 55.3-kDa P. falciparum HK (PfHK) shares several biochemical characteristics with mammalian HKs, including being inhibited by its products, it has limited amino acid identity (∼26%) to the human HKs, suggesting that enzyme-specific therapeutics could be generated. To that end, interrogation of a selected small-molecule library of HK inhibitors has identified a class of PfHK inhibitors, isobenzothiazolinones, some of which have 50% inhibitory concentrations (IC50s) of <1 μM. Inhibition was reversible by dilution but not by treatment with a reducing agent, suggesting that the basis for enzyme inactivation was not covalent association with the inhibitor. Lastly, six of these compounds and the related molecule ebselen inhibited P. falciparum growth in vitro (50% effective concentration [EC50] of ≥0.6 and <6.8 μM). These findings suggest that the chemotypes identified here could represent leads for future development of therapeutics against P. falciparum
A cell based high-throughput screening approach for the discovery of new inhibitors of respiratory syncytial virus
Background:
Human respiratory syncytial virus (hRSV) is a highly contagious pathogen and is the most common cause of bronchiolitis and pneumonia for infants and children under one year of age. Worldwide, greater than 33 million children under five years of age are affected by hRSV resulting in three million hospitalizations and 200,000 deaths. However, severe lower respiratory tract disease may occur at any age, especially among the elderly or those with compromised cardiac, pulmonary, or immune systems. There is no vaccine commercially available. Existing therapies for the acute infection are ribavirin and the prophylactic humanized monoclonal antibody (Synagis® from MedImmune) that is limited to use in high risk pediatric patients. Thus, the discovery of new inhibitors for hRSV would be clinically beneficial.
Results:
We have developed and validated a 384-well cell-based, high-throughput assay that measures the cytopathic effect of hRSV (strain Long) in HEp-2 cells using a luminescent-based detection system for signal endpoint (Cell Titer Glo®). The assay is sensitive and robust, with Z factors greater than 0.8, signal to background greater than 35, and signal to noise greater than 24. Utilizing this assay, 313,816 compounds from the Molecular Libraries Small Molecule Repository were screened at 10 μM. We identified 7,583 compounds that showed greater than 22% CPE inhibition in the primary screen. The top 2,500 compounds were selected for confirmation screening and 409 compounds showed at least 50% inhibition of CPE and were considered active. We selected fifty-one compounds, based on potency, selectivity and chemical tractability, for further evaluation in dose response and secondary assays Several compounds had SI50 values greater than 3, while the most active compound displayed an SI50 value of 58.9.
Conclusions:
A robust automated luminescent-based high throughput screen that measures the inhibition of hRSV-induced cytopathic effect in HEp-2 cells for the rapid identification of potential inhibitors from large compound libraries has been developed, optimized and validated. The active compounds identified in the screen represent different classes of molecules, including aryl sulfonylpyrrolidines which have not been previously identified as having anti-hRSV activity
Nomad rover field experiment, Atacama desert, Chile 2. Identification of paleolife evidence using a robotic vehicle: Lessons and recommendations for a Mars sample return mission
This is the publisher's version, also available electronically from "http://onlinelibrary.wiley.com".During the Nomad Rover Field Experiment in the Atacama Desert (Chile), a potential fossil was identified in a boulder by the science team remotely located at NASA Ames Research Center, California. The science team requested the collecting of the boulder that was returned for laboratory analysis. This analysis confirmed the evidence of paleolife. As the first fossil identified and sampled by a remotely located science team using a rover, we use the case of sample I-250697 to describe the process, both in the field and later in the laboratory during the rock analysis, which led to the identification, characterization, and confirmation of the evidence of paleolife evidence in I-250697. We point out the lessons that this case provides for future Mars sample return missions
(S)-N-(2,5-Dimethylphenyl)-1-(quinoline-8-ylsulfonyl)pyrrolidine-2-carboxamide as a Small Molecule Inhibitor Probe for the Study of Respiratory Syncytial Virus Infection
A high-throughput, cell-based screen was used to identify chemotypes as inhibitors for human respiratory syncytial virus (hRSV). Optimization of a sulfonylpyrrolidine scaffold resulted in compound 5o that inhibited a virus-induced cytopathic effect in the entry stage of infection (EC50 = 2.3 ± 0.8 µM) with marginal cytotoxicity (CC50 = 30.9 ± 1.1 µM) and reduced viral titer by 100-fold. Compared to ribavirin, sulfonylpyrrolidine 5o demonstrated an improved in vitro potency and selectivity index
A Potent and Selective Inhibitor of Cdc42 GTPase
Cdc42, a member of the Rho family of GTPases, has been shown to play a role in cell adhesion, cytoskeletal arrangement, phagocytosis and cell motility and migration, in addition to a host of other diverse biological processes. The function of Rho-family GTPases in disease pathogenesis has been well established and identification of small, cell permeable molecules that selectively and reversibly regulate Rho GTPases is of high scientific and potentially therapeutic interest. There has been limited success in identifying inhibitors that specifically interact with small Rho family GTPases. The identified probe, ML141 (CID-2950007), is demonstrated to be a potent, selective and reversible non-competitive inhibitor of Cdc42 GTPase suitable for in vitro assays, with low micromolar potency and selectivity against other members of the Rho family of GTPases (Rac1, Rab2, Rab7). Given the highly complementary nature of the function of the Rho family GTPases, Cdc42 selective inhibitors such as those reported here should help untangle the roles of the proteins in this family
Discovery of a Novel Compound with Anti-Venezuelan Equine Encephalitis Virus Activity That Targets the Nonstructural Protein 2
Abstract
Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.
Author Summary
Alphaviruses occur worldwide, causing significant diseases such as encephalitis or arthritis in humans and animals. In addition, some alphaviruses, such as VEEV, pose a biothreat due to their high infectivity and lack of available treatments. To discover small molecule inhibitors with lead development potential, we used a cell-based assay to screen 348,140 compounds for inhibition of a VEEV-induced cytopathic effect. The screen revealed a scaffold with high inhibitory VEEV cellular potency and low cytotoxicity liability. While most previously reported anti-alphavirus compounds inhibit host proteins, evidence supported that this scaffold targeted the VEEV nsP2 protein, and that inhibition was associated with viral replication. Interestingly, compound resistance studies with VEEV mapped activity to the N-terminal domain of nsP2, to which no known function has been attributed. Ultimately, this discovery has delivered a small molecule-derived class of potent VEEV inhibitors whose activity is coupled to the nsP2 viral protein, a novel target with a previously unestablished biological role that is now implicated in viral replication.This research was supported by the following funding sources: NIH R03MH087448-01A1, University of Louisville Internal Research Initiate grant to DHC, USAMRAA W81XWH-10-2-0064 and W81XWH-08-2-0024 to CBJ. Screening was provided by the Southern Research Specialized Screening Center (U54HG005034-0) and chemistry through the University of Kansas Specialized Chemistry Center (U54HG005031). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Alveolar macrophage- derived extracellular vesicles inhibit endosomal fusion of influenza virus
Alveolar macrophages (AMs) and epithelial cells (ECs) are the lone resident lung cells positioned to respond to pathogens at early stages of infection. Extracellular vesicles (EVs) are important vectors of paracrine signaling implicated in a range of (patho)physiologic contexts. Here we demonstrate that AMs, but not ECs, constitutively secrete paracrine activity localized to EVs which inhibits influenza infection of ECs in vitro and in vivo. AMs exposed to cigarette smoke extract lost the inhibitory activity of their secreted EVs. Influenza strains varied in their susceptibility to inhibition by AM- EVs. Only those exhibiting early endosomal escape and high pH of fusion were inhibited via a reduction in endosomal pH. By contrast, strains exhibiting later endosomal escape and lower fusion pH proved resistant to inhibition. These results extend our understanding of how resident AMs participate in host defense and have broader implications in the defense and treatment of pathogens internalized within endosomes.SynopsisExtracellular vesicles are emerging as homeostatic vectors, but poorly understood in influenza infection. Here, alveolar macrophage- derived extracellular vesicles inhibit influenza- endosome fusion in a strain- specific, and pH- dependent manner.Following initial infection of epithelial cells, the influenza virus traffics within host cell endosomes which undergo progressive acidification.Prior to gaining entry into the nucleus for its replication, influenza virus must fuse with endosome membranes- an event initiated at a strain- specific pH.Alveolar macrophages secrete extracellular vesicles which, when internalized by epithelial cells, lead to accelerated acidification of endosomes.Infection of epithelial cells by influenza strains which preferentially fuse with endosome membranes at high pH is inhibited by extracellular vesicles. Infection by influenza strains which fuse at low pH is unaffected by extracellular vesicles.Extracellular vesicles secreted from alveolar macrophages can promote acidification of endosomes in influenza virus- infected epithelial cells to inhibit viral replication.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156477/5/embj2020105057-sup-0002-EVFigs.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156477/4/embj2020105057_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156477/3/embj2020105057.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156477/2/embj2020105057-sup-0001-Appendix.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156477/1/embj2020105057.reviewer_comments.pd
Puddle formation, persistent gaps, and non-mean-field breakdown of superconductivity in overdoped (Pb,Bi)2Sr2CuO6+{\delta}
The cuprate high-temperature superconductors exhibit many unexplained
electronic phases, but it was often thought that the superconductivity at
sufficiently high doping is governed by conventional mean-field
Bardeen-Cooper-Schrieffer (BCS) theory[1]. However, recent measurements show
that the number of paired electrons (the superfluid density) vanishes when the
transition temperature Tc goes to zero[2], in contradiction to expectation from
BCS theory. The origin of this anomalous vanishing is unknown. Our scanning
tunneling spectroscopy measurements in the overdoped regime of the
(Pb,Bi)2Sr2CuO6+{\delta} high-temperature superconductor show that it is due to
the emergence of puddled superconductivity, featuring nanoscale superconducting
islands in a metallic matrix[3,4]. Our measurements further reveal that this
puddling is driven by gap filling, while the gap itself persists beyond the
breakdown of superconductivity. The important implication is that it is not a
diminishing pairing interaction that causes the breakdown of superconductivity.
Unexpectedly, the measured gap-to-filling correlation also reveals that
pair-breaking by disorder does not play a dominant role and that the mechanism
of superconductivity in overdoped cuprate superconductors is qualitatively
different from conventional mean-field theory
- …