10 research outputs found

    Immunohistochemical evaluation of molecular radiotherapy target expression in neuroblastoma tissue

    Get PDF
    Purpose Neuroblastoma may be treated with molecular radiotherapy, 131I meta-Iodobenzylguanidine and 177Lu Lutetium DOTATATE, directed at distinct molecular targets: Noradrenaline Transporter Molecule (NAT) and Somatostatin Receptor (SSTR2), respectively. This study used immunohistochemistry to evaluate target expression in archival neuroblastoma tissue, to determine whether it might facilitate clinical use of molecular radiotherapy. Methods Tissue bank samples of formalin fixed paraffin embedded neuroblastoma tissue from patients for whom clinical outcome data were available were sectioned and stained with haematoxylin and eosin, and monoclonal antibodies directed against NAT and SSTR2. Sections were examined blinded to clinical information and scored for the percentage and intensity of tumour cells stained. These data were analysed in conjunction with clinical data. Results Tissue from 75 patients was examined. Target expression scores varied widely between patients: NAT median 45%, inter-quartile range 25% - 65%; and SSTR2 median 55%, interquartile range 30% – 80%; and in some cases heterogeneity of expression between different parts of a tumour was observed. A weak positive correlation was observed between the expression scores of the different targets: correlation coefficient = 0.23, p = 0.05. MYCN amplified tumours had lower SSTR2 scores: mean difference 23% confidence interval 8% - 39%, p < 0.01. Survival did not differ by scores. Conclusions As expression of both targets is variable and heterogeneous, imaging assessment of both may yield more clinical information than either alone. The clinical value of immunohistochemical assessment of target expression requires prospective evaluation. Variable target expression within a patient may contribute to treatment failure

    Parents' responses to prognostic disclosure at diagnosis of a child with a high-risk brain tumor:Analysis of clinician-parent interactions and implications for clinical practice

    Get PDF
    BackgroundPrevious studies have found that parents of children with cancer desire more prognostic information than is often given even when prognosis is poor. We explored in audio‐recorded consultations the kinds of information they seek.MethodsEthnographic study including observation and audio recording of consultations at diagnosis. Consultations were transcribed and analyzed using an interactionist perspective including tools drawn from conversation and discourse analysis.ResultsEnrolled 21 parents and 12 clinicians in 13 cases of children diagnosed with a high‐risk brain tumor (HRBT) over 20 months at a tertiary pediatric oncology center. Clinicians presented prognostic information in all cases. Through their questions, parents revealed what further information they desired. Clinicians made clear that no one could be absolutely certain what the future held for an individual child. Explicit communication about prognosis did not satisfy parents’ desire for information about their own child. Parents tried to personalize prognostic information and to apply it to their own situation. Parents moved beyond prognostic information presented and drew conclusions, which could change over time. Parents who were present in the same consultations could form different views of their child's prognosis.ConclusionPopulation level prognostic information left parents uncertain about their child's future. The need parents revealed was not for more such information but rather how to use the information given and how to apply it to their child in the face of such uncertainty. Further research is needed on how best to help parents deal with uncertainty and make prognostic information actionable

    Personalisation of Molecular Radiotherapy through Optimisation of Theragnostics

    No full text
    Molecular radiotherapy, or targeted radionuclide therapy, uses systemically administered drugs bearing a suitable radioactive isotope, typically a beta emitter. These are delivered via metabolic or other physiological pathways to cancer cells in greater concentrations than to normal tissues. The absorbed radiation dose in tumour deposits causes chromosomal damage and cell death. A partner radiopharmaceutical, most commonly the same vector labelled with a different radioactive atom, with emissions suitable for gamma camera or positron emission tomography imaging, is used to select patients for treatment and to assess response. The use of these pairs of radio-labelled drugs, one optimised for therapy, the other for diagnostic purposes, is referred to as theragnostics. Theragnostics is increasingly moving away from a fixed number of defined activity administrations, to a much more individualised or personalised approach, with the aim of improving treatment outcomes, and minimising toxicity. There is, however, still significant scope for further progress in that direction. The main tools for personalisation are the following: imaging biomarkers for better patient selection; predictive and post-therapy dosimetry to maximise the radiation dose to the tumour while keeping organs at risk within tolerance limits; imaging for assessment of treatment response; individualised decision making and communication about radiation protection, adjustments for toxicity, inpatient and outpatient care
    corecore