110 research outputs found

    Using Facebook Advertising to Connect with Extension Audiences

    Get PDF
    There is considerable interest in using social media to reach Extension audiences. The study\u27s main objective was to assess the effectiveness of Facebook promotion and event advertising on creating new client contacts as measured by Likes. The results show the fan base for each county increased slowly prior to and following the Facebook ad, while it increased more rapidly during the advertisement period. Thus, Facebook advertising appears to be an effective tool to increase awareness of Extension Facebook pages. Extension professionals should consider investing in Facebook advertising to expand their fan base

    Simian hemorrhagic fever virus infection of rhesus macaques as a model of viral hemorrhagic fever: Clinical characterization and risk factors for severe disease

    Get PDF
    AbstractSimian Hemorrhagic Fever Virus (SHFV) has caused sporadic outbreaks of hemorrhagic fevers in macaques at primate research facilities. SHFV is a BSL-2 pathogen that has not been linked to human disease; as such, investigation of SHFV pathogenesis in non-human primates (NHPs) could serve as a model for hemorrhagic fever viruses such as Ebola, Marburg, and Lassa viruses. Here we describe the pathogenesis of SHFV in rhesus macaques inoculated with doses ranging from 50PFU to 500,000PFU. Disease severity was independent of dose with an overall mortality rate of 64% with signs of hemorrhagic fever and multiple organ system involvement. Analyses comparing survivors and non-survivors were performed to identify factors associated with survival revealing differences in the kinetics of viremia, immunosuppression, and regulation of hemostasis. Notable similarities between the pathogenesis of SHFV in NHPs and hemorrhagic fever viruses in humans suggest that SHFV may serve as a suitable model of BSL-4 pathogens

    Models of classroom assessment for course-based research experiences

    Get PDF
    Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment—(1) Assessing Laboratory Work and Scientific Thinking; (2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; (3) Appraising Forms of Scientific Communication; and (4) Metacognition of Learning—along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate students’ ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education

    Visualization of inositol phosphate-dependent mobility of Ku: depletion of the DNA–PK cofactor InsP(6) inhibits Ku mobility

    No full text
    Repair of DNA double-strand breaks (DSBs) in mammalian cells by nonhomologous end-joining (NHEJ) is initiated by the DNA–PK protein complex. Recent studies have shown inositol hexakisphosphate (InsP(6)) is a potent cofactor for DNA–PK activity in NHEJ. Specifically, InsP(6) binds to the Ku component of DNA–PK, where it induces a conformational change and a corresponding increase in DNA end-joining activity. However, the effect of InsP(6) on the dynamics of Ku, such as its mobility in the nucleus, is unknown. Importantly, these dynamics reflect the character of Ku’s interactions with other molecules. To address this question, the diffusion of Ku was measured by fluorescence photobleaching experiments using cells expressing green fluorescent protein (GFP)-labeled Ku. InsP(6) was depleted by treating cells with calmodulin inhibitors, which included the compounds W7 and chlorpromazine. These treatments caused a 50% reduction in the mobile fraction of Ku–GFP, and this could be reversed by replenishing cells with InsP(6). By expressing deletion mutants of Ku–GFP, it was determined that its W7-sensitive region occurred at the N-terminus of the dimerization domain of Ku70. These results therefore show that InsP(6) enhances Ku mobility through a discrete region of Ku70, and modulation of InsP(6) levels in cells represents a potential avenue for regulating NHEJ by affecting the dynamics of Ku and hence its interaction with other nuclear proteins

    RAG2 localization and dynamics in the pre-B cell nucleus.

    No full text
    RAG2 of the V(D)J recombinase is essential for lymphocyte development. Within the RAG2 noncore region is a plant homeodomain (PHD) that interacts with the modified histone H3K4me3, and this interaction is important for relieving inhibition of the RAG recombinase for V(D)J recombination. However, the effect of the noncore region on RAG2 localization and dynamics in cell nuclei is poorly understood. Here, we used cell imaging to measure the effect of mutating the RAG2 noncore region on properties of the full length protein. We measured GFP-labeled full length RAG2 (FL), the RAG2 core region alone (Core), and a T490A mutant in the noncore region, which has unique regulatory properties. This showed that FL, T490A, and Core localized to nuclear domains that were adjacent to DAPI-rich heterochromatin, and that contained the active chromatin marker H3K4me3. Within the RAG2-enriched regions, T490A exhibited greater colocalization with H3K4me3 than either FL or Core. Furthermore, colocalization of H3K4me3 with FL and T490A, but not Core, increased in conditions that increased H3K4me3 levels. Superresolution imaging showed H3K4me3 was distributed as puncta that RAG2 abutted, and mobility measurements showed that T490A had a significantly lower rate of diffusion within the nucleus than either FL or Core proteins. Finally, mutating Trp453 of the T490A mutant (W453A,T490A), which blocks PHD-dependent interactions with H3K4me3, abolished the T490A-mediated increased colocalization with H3K4me3 and slower mobility compared to FL. Altogether, these data show that Thr490 in the noncore region modulates RAG2 localization and dynamics in the pre-B cell nucleus, such as by affecting RAG2 interactions with H3K4me3

    CD28 Sensitizes TCR Ca 2+

    No full text
    • …
    corecore