28 research outputs found

    The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations

    Get PDF
    Background: Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers. Methods: Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort. Results: For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc] ¼ 0.99, 95% confidence interval [CI] ¼ 0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRc¼ 0.79, 95% CI ¼ 0.69 to 0.91; HRc¼ 0.70, 95% CI ¼ 0.59 to 0.82; HRc¼ 0.50, 95% CI ¼ 0.40 to 0.63, for 2, 3, and 4 FTPs, respectively, Ptrend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort Ptrend ¼ .0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp] ¼ 1.69, 95% CI ¼ 1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRc ¼ 1.33, 95% CI ¼ 1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRc¼ 0.72, 95% CI ¼ 0.54 to 0.98). Conclusions: These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers

    Modelling heterogeneity in viral-tumour dynamics: The effects of gene-attenuation on viral characteristics

    No full text
    The use of viruses as a cancer treatment is becoming increasingly more robust; however, there is still a long way to go before a completely successful treatment is formulated. One major challenge in the field is to select which virus, out of a burgeoning number of oncolytic viruses and engineered derivatives, can maximise both treatment spread and anticancer cytotoxicity. To assist in solving this problem, an in-depth understanding of the virus-tumour interaction is crucial. In this article, we present a novel integro-differential system with distributed delays embodying the dynamics of an oncolytic adenovirus with a fixed population of tumour cells in vitro, allowing for heterogeneity to exist in the virus and cell populations. The parameters of the model are optimised in a hierarchical manner, the purpose of which is not to obtain a perfect representation of the data. Instead, we place our parameter values in the correct region of the parameter space. Due to the sparse nature of the data it is not possible to obtain the parameter values with any certainty, but rather we demonstrate the suitability of the model. Using our model we quantify how modifications to the viral genome alter the viral characteristics, specifically how the attenuation of the E1B 19 and E1B 55 gene affect the system performance, and identify the dominant processes altered by the mutations. From our analysis, we conclude that the deletion of the E1B 55 gene significantly reduces the replication rate of the virus in comparison to the deletion of the E1B 19 gene. We also found that the deletion of both the E1B 19 and E1B 55 genes resulted in a long delay in the average replication start time of the virus. This leads us to propose the use of E1B 19 gene-attenuated adenovirus for cancer therapy, as opposed to E1B 55 gene-attenuated adenoviruses.</p
    corecore