14 research outputs found

    Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses

    Get PDF
    Immunosenescence refers to age-related declines in the capacity to respond to infections such as influenza (flu). Caloric restriction represents a known strategy to slow many aging processes, including those involving the immune system. More recently, some changes in the microbiome have been described with aging, while the gut microbiome appears to influence responses to flu vaccination and infection. With these considerations in mind, we used a well-established mouse model of flu infection to explore the impact of flu infection, aging, and caloric restriction on the gut microbiome. Young, middle-aged, and aged caloric restricted (CR) and ad lib fed (AL) mice were examined after a sublethal flu infection. All mice lost 10–20% body weight and, as expected for these early time points, losses were similar at different ages and between diet groups. Cytokine and chemokine levels were also similar with the notable exception of IL-1α, which rose more than fivefold in aged AL mouse serum, while it remained unchanged in aged CR serum. Fecal microbiome phyla abundance profiles were similar in young, middle-aged, and aged AL mice at baseline and at 4 days post flu infection, while increases in Proteobacteria were evident at 7 days post flu infection in all three age groups. CR mice, compared to AL mice in each age group, had increased abundance of Proteobacteria and Verrucomicrobia at all time points. Interestingly, principal coordinate analysis determined that diet exerts a greater effect on the microbiome than age or flu infection. Percentage body weight loss correlated with the relative abundance of Proteobacteria regardless of age, suggesting flu pathogenicity is related to Proteobacteria abundance. Further, several microbial Operational Taxonomic Units from the Bacteroidetes phyla correlated with serum chemokine/cytokines regardless of both diet and age suggesting an interplay between flu-induced systemic inflammation and gut microbiota. These exploratory studies highlight the impact of caloric restriction on fecal microbiome in both young and aged animals, as well as the many complex relationships between flu responses and gut microbiota. Thus, these preliminary studies provide the necessary groundwork to examine how gut microbiota alterations may be leveraged to influence declining immune responses with aging

    The Effects of Energy Intake on Upper Respiratory Symptoms in Ultra-Endurance Triathletes

    Get PDF
    Background: It is unclear whether energy intake can impact the incidence of upper respiratory symptoms (URS). The purpose of this study was to examine if there are differences in energy intake between symptomatic (SYM) and asymptomatic (ASYM) groups of URS in Ironman-triathletes. Methods: Thirty-three subjects competing in the Lake Placid Ironman-triathlon (mean±SD; age,37±8y; height,178±8cm; mass,76.3±10.4kg; body fat,10.8±3.8%) were randomized into either the control (CON) or intervention (INT). INT consumed 4-commercial recovery drinks, two immediately post-race and two 3-hours post-race. Calorie and macronutrient intake were recorded pre-, during, and post-race. Subjects completed the Wisconsin URS Survey to assess URS over the next two weeks. Two analyses were done by comparing results between CON and INT, and when subjects were classified as either asymptomatic (ASYM=20) or symptomatic (SYM=13). Results: There were no differences in energy intake (p\u3e0.05) and URS (INT,32±38; CON,16±23; p=0.155). However, on the race day, SYM (9,044±2,598kcal) consumed less energy intake than ASYM (10,991±2497kcal) (p=0.044). Also, SYM consumed less energy the day before the race (p=0.031) and post-race (p=0.008). ASYM consumed greater carbohydrate the day before the race (p=0.032), fat the day of the race (p=0.006), carbohydrate post-race (p=0.08) and fat post-race (p=0.002). Conclusions: Overall energy intake was similar between CON and INT. However, when subjects were differentiated by URS, SYM consumed less calories the day before and day of the race versus ASYM

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses

    No full text
    Immunosenescence refers to age-related declines in the capacity to respond to infections such as influenza (flu). Caloric restriction represents a known strategy to slow many aging processes, including those involving the immune system. More recently, some changes in the microbiome have been described with aging, while the gut microbiome appears to influence responses to flu vaccination and infection. With these considerations in mind, we used a well-established mouse model of flu infection to explore the impact of flu infection, aging, and caloric restriction on the gut microbiome. Young, middle-aged, and aged caloric restricted (CR) and ad lib fed (AL) mice were examined after a sublethal flu infection. All mice lost 10-20% body weight and, as expected for these early time points, losses were similar at different ages and between diet groups. Cytokine and chemokine levels were also similar with the notable exception of IL-1α, which rose more than fivefold in aged AL mouse serum, while it remained unchanged in aged CR serum. Fecal microbiome phyla abundance profiles were similar in young, middle-aged, and aged AL mice at baseline and at 4 days post flu infection, while increases in Proteobacteria were evident at 7 days post flu infection in all three age groups. CR mice, compared to AL mice in each age group, had increased abundance of Proteobacteria and Verrucomicrobia at all time points. Interestingly, principal coordinate analysis determined that diet exerts a greater effect on the microbiome than age or flu infection. Percentage body weight loss correlated with the relative abundance of Proteobacteria regardless of age, suggesting flu pathogenicity is related to Proteobacteria abundance. Further, several microbial Operational Taxonomic Units from the Bacteroidetes phyla correlated with serum chemokine/cytokines regardless of both diet and age suggesting an interplay between flu-induced systemic inflammation and gut microbiota. These exploratory studies highlight the impact of caloric restriction on fecal microbiome in both young and aged animals, as well as the many complex relationships between flu responses and gut microbiota. Thus, these preliminary studies provide the necessary groundwork to examine how gut microbiota alterations may be leveraged to influence declining immune responses with aging. Front Immunol 2017 Sep 20; 8:1164

    The effect of metformin on influenza vaccine responses in nondiabetic older adults: a pilot trial

    No full text
    Abstract Background Aging is associated with progressive declines in immune responses leading to increased risk of severe infection and diminished vaccination responses. Influenza (flu) is a leading killer of older adults despite availability of seasonal vaccines. Geroscience-guided interventions targeting biological aging could offer transformational approaches to reverse broad declines in immune responses with aging. Here, we evaluated effects of metformin, an FDA approved diabetes drug and candidate anti-aging drug, on flu vaccination responses and markers of immunological resilience in a pilot and feasibility double-blinded placebo-controlled study. Results Healthy older adults (non-diabetic/non-prediabetic, age: 74.4 ± 1.7 years) were randomized to metformin (n = 8, 1500 mg extended release/daily) or placebo (n = 7) treatment for 20 weeks and were vaccinated with high-dose flu vaccine after 10 weeks of treatment. Peripheral blood mononuclear cells (PBMCs), serum, and plasma were collected prior to treatment, immediately prior to vaccination, and 1, 5, and 10 weeks post vaccination. Increased serum antibody titers were observed post vaccination with no significant differences between groups. Metformin treatment led to trending increases in circulating T follicular helper cells post-vaccination. Furthermore, 20 weeks of metformin treatment reduced expression of exhaustion marker CD57 in circulating CD4 T cells. Conclusions Pre-vaccination metformin treatment improved some components of flu vaccine responses and reduced some markers of T cell exhaustion without serious adverse events in nondiabetic older adults. Thus, our findings highlight the potential utility of metformin to improve flu vaccine responses and reduce age-related immune exhaustion in older adults, providing improved immunological resilience in nondiabetic older adults

    Loss of resilience contributes to detrusor underactivity in advanced age.

    No full text
    Volume hyposensitivity resulting from impaired sympathetic detrusor relaxation during blad- der filling contributes to detrusor underactivity (DU) associated with aging. Detrusor tension regulation provides an adaptive sensory input of bladder volume to the brainstem and is challenged by physiological stressors superimposed upon biological aging. We recently showed that HCN channels have a stabilizing role in detrusor sympathetic relaxation. While mature mice maintain homeostasis in the face of stressors, old mice are not always capable. In old mice, there is a dichotomous phenotype, in which resilient mice adapt and maintain homeostasis, while non-resilient mice fail to maintain physiologic homeostasis. In this DU model, we used cystometry as a stressor to categorize mice as old-responders (old-R, develop a filling/voiding cycle) or old-non-responders (old-NR, fail to develop a filling/voiding cycle; fluctuating high pressures and continuous leaking), while also assess- ing functional and molecular differences. Lamotrig- ine (HCN activator)-induced bladder relaxation is diminished in old-NR mice following HCN-blockade. Relaxation responses to NS 1619 were reduced in old-NR mice, with the effect lost following HCN- blockade. However, RNA-sequencing revealed no differences in HCN gene expression and electrophysi- ology studies showed similar percentage of detrusor myocytes expressing HCN (Ih) current between old-R and old-NR mice. Our murine model of DU further defines a role for HCN, with failure of adaptive recal- ibration of HCN participation and intensity of HCN- mediated stabilization, while genomic studies show upregulated myofibroblast and fibrosis pathways and downregulated neurotransmitter-degradation path- ways in old-NR mice. Thus, the DU phenotype is multifactorial and represents the accumulation of age- associated loss in homeostatic mechanisms
    corecore