8 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Challenges and opportunities for exploiting the role of zeolite confinements for the selective hydrogenation of acetylene

    No full text
    Zeolites, with their ordered crystalline porous structure, provide a unique opportunity to confine metal catalysts, whether single atoms (e.g., transition metal ions (TMIs)) or metal clusters when used as a catalyst support. The confined environment has been shown to provide rate and selectivity enhancement across a variety of reactions via both steric and electronic effects such as size exclusion and transition state stabilization. In this review, we provide a survey of various zeolite confined catalysts used for the semi-hydrogenation of acetylene highlighting their performance, defined by ethylene selectivity at full acetylene conversion, in relationship to the synthesis technique employed. Synthesis methods that ensure confinement with catalyst transition metal location in the extra-framework positions are observed to have the report the highest selectivity to ethylene. However, the underlying molecular factors responsible for selective catalysis within confinement remains elusive due to the difficulty of deconvoluting individual effects. Through the careful use of a combination of characterization and spectroscopic methods, insights into the relationship between the properties of zeolite confined catalysts and their performance have been explored in other works for a variety of reactions. More specifically, operando spectroscopy studies have revealed the dynamic behavior of zeolite confined catalysts under various conditions implying that the structure and properties observed ex-situ do not always match those of the active catalyst under reaction conditions. Applying this type of analysis to acetylene semi-hydrogenation, a simple gas phase reaction, can help elucidate the structure-function relationship of zeolite confined catalysts allowing for more informed design choices and consequently their application to a wider variety of more complex reactions such as the liquid phase hydrogenation of alkynols where solvent effects must also be considered in addition to those of confinement

    Challenges and Opportunities for Exploiting the Role of Zeolite Confinements for the Selective Hydrogenation of Acetylene

    No full text
    Zeolites, with their ordered crystalline porous structure, provide a unique opportunity to confine metal catalysts, whether single atoms (e.g., transition metal ions (TMIs)) or metal clusters, when used as a catalyst support. The confined environment has been shown to provide rate and selectivity enhancement across a variety of reactions via both steric and electronic effects, such as size exclusion and transition state stabilization. In this review, we provide a survey of various zeolite confined catalysts used for the semihydrogenation of acetylene highlighting their performance, defined by ethylene selectivity at full acetylene conversion, in relationship to the synthesis technique employed. Synthesis methods that ensure confinement with the catalyst transition metal location in the extra-framework positions are reported to have the highest selectivity to ethylene. However, the underlying molecular factors responsible for selective catalysis within confinement remain elusive due to the difficulty in deconvoluting individual effects. Through the careful use of a combination of characterization and spectroscopic methods, insights into the relationship between the properties of zeolite confined catalysts and their performance have been explored in other works for a variety of reactions. More specifically, operando spectroscopy studies have revealed the dynamic behavior of zeolite confined catalysts under various conditions implying that the structure and properties observed ex situ do not always match those of the active catalyst under reaction conditions. Applying this type of analysis to acetylene semihydrogenation, a simple gas phase reaction, can help elucidate the structure–function relationship of zeolite confined catalysts allowing for more informed design choices and consequently their application to a wider variety of more complex reactions such as the liquid phase hydrogenation of alkynols where solvent effects must also be considered in addition to those of confinement

    Influence of Acid Strength on Olefin Selectivity of Chabazite (CHA) Framework Zeolite/Zeotypes during Tandem CO2 Hydrogenation

    No full text
    The role of the Brønsted acid sites (BAS) strength of chabazite (CHA) framework on olefin selectivity during methanol-to-olefin (MTO) and tandem CO2 hydrogenation was investigated over an aluminosilicate, SSZ-13 and a silicoaluminophospate, SAPO-34 and their bifunctional admixtures with In2O3. During MTO, SSZ-13 and SAPO-34 yielded primarily olefins (cumulative selectivity of ~60% and ~90%, respectively at cumulative turn-over number, TON over 500). Interestingly, an interpellet admixture of In2O3/SSZ-13 (distance between redox sites and BAS of 260-900 µm)) predominantly yielded paraffins (cumulative selectivity of ~93% at cumulative TON over 40) via the secondary hydrogenation of olefins as seen from the cumulative paraffin-to-olefin (P/O) ratio of ~21 during CO2 hydrogenation. In comparison, an interpellet In2O3/SAPO-34 admixture yielded majority olefins (cumulative selectivity of ~67% at cumulative TON over 60) due to a lesser degree of secondary hydrogenation (cumulative P/O ratio of ~0.2) on the BAS in SAPO-34, which has a lower acid strength as compared to SSZ-13. Interestingly, both interpellet admixtures of In2O3/SSZ-13 and In2O3/SAPO-34 remained stable during tandem CO2 hydrogenation by favoring the olefin cycle and suppressing the formation of deactivation-inducing-aromatics, unlike MTO, where both admixtures showed fast deactivation. Ion-exchange of BAS (H+) with Inδ+ (from In2O3) in intrapellet admixtures (distance between redox sites and BAS of 270-1500 nm) of In2O3/SSZ-13, and In2O3/SAPO-34, inhibited C-C coupling and predominantly formed CH4. Overall, our study related to the product selectivity and deactivation in MTO and tandem CO2 hydrogenation over CHA framework zeolite/zeotype to the aromatic and olefin pool in the hydrocarbon pool mechanism. These underpinnings will help with rational catalyst design for tandem CO2 hydrogenation

    Intermediate Transfer Rates and Solid-State Ion Exchange are Key Factors Determining the Bifunctionality of a Tandem CO2 Hydrogenation Catalyst

    No full text
    Probing the interaction between different active sites and transfer of reaction intermediates in bifunctional catalysts for tandem hydrogenation of CO2 is crucial for optimal catalyst design that maximize synergy to achieve high rates and product selectivity. Herein, thermocatalytic conversion of CO2 to hydrocarbon (HC) via a methanol (CH3OH) intermediate was investigated by modulating the placement of In2O3 and HZSM-5 in bifunctional admixtures at temperatures between 350 to 450 °C and 500 psig, to probe the key factors that drive synergy in these bifunctional systems. Analysis of the intermediate CH3OH transfer rates showed that although a millimeter scale placement of In2O3 and HZSM-5 yields a simple tandem reaction with a total HC and methanol CH3OH space-time yield of 8×10-6 molCgcat-1min-1, a microscale placement exhibits a ten-fold increase in catalytic activity with a total HC and CH3OH space-time yield of 8×10-5 molCgcat-1min-1 (at 400 °C) due to a faster advective and diffusive transfer rate of CH3OH. A combination of reactivity, spectroscopy with Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) patterns, microscopy with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and control experiments on methanol to hydrocarbons (MTH) revealed that further enhancing the reaction intermediate transfer at a nanoscale placement was counteracted by solid-state ion exchange (SSIE) between Brønsted acid sites (H+) of the HZSM-5 with the Inδ+ ions from In2O3, and that the formation of CH4 at the nanoscale placement was likely through CH3OH hydrogenolysis and not CO2 methanation at these intimate distances. Overall, our data showed the interconnected and subtle ways through which bifunctionality of catalysts could be regulated and paves the way for the development of design principles for designing more effective bifunctional catalysts for tandem CO2 hydrogenation

    PEGylation of Metal Oxide Nanoparticles Modulates Neutrophil Extracellular Trap Formation

    No full text
    Novel metal oxide nanoparticle (NP) contrast agents may offer safety and functionality advantages over conventional gadolinium-based contrast agents (GBCAs) for cancer diagnosis by magnetic resonance imaging. However, little is known about the behavior of metal oxide NPs, or of their effect, upon coming into contact with the innate immune system. As neutrophils are the body&rsquo;s first line of defense, we sought to understand how manganese oxide and iron oxide NPs impact leukocyte functionality. Specifically, we evaluated whether contrast agents caused neutrophils to release web-like fibers of DNA known as neutrophil extracellular traps (NETs), which are known to enhance metastasis and thrombosis in cancer patients. Murine neutrophils were treated with GBCA, bare manganese oxide or iron oxide NPs, or poly(lactic-co-glycolic acid) (PLGA)-coated metal oxide NPs with different incorporated levels of poly(ethylene glycol) (PEG). Manganese oxide NPs elicited the highest NETosis rates and had enhanced neutrophil uptake properties compared to iron oxide NPs. Interestingly, NPs with low levels of PEGylation produced more NETs than those with higher PEGylation. Despite generating a low rate of NETosis, GBCA altered neutrophil cytokine expression more than NP treatments. This study is the first to investigate whether manganese oxide NPs and GBCAs modulate NETosis and reveals that contrast agents may have unintended off-target effects which warrant further investigation

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore