130 research outputs found

    Personal identity (de)formation among lifestyle travellers: A double-edged sword?

    Get PDF
    This article explores the personal identity work of lifestyle travellers – individuals for whom extended leisure travel is a preferred lifestyle that they return to repeatedly. Qualitative findings from in-depth semi-structured interviews with lifestyle travellers in northern India and southern Thailand are interpreted in light of theories on identity formation in late modernity that position identity as problematic. It is suggested that extended leisure travel can provide exposure to varied cultural praxes that may contribute to a sense of social saturation. Whilst a minority of the respondents embraced a saturation of personal identity in the subjective formation of a cosmopolitan cultural identity, several of the respondents were paradoxically left with more identity questions than answers as the result of their travels

    A Phenomenological Analysis of Heavy Hadron Lifetimes

    Full text link
    A phenomenological analysis of lifetimes of bottom and charmed hadrons within the framework of the heavy quark expansion is performed. The baryon matrix element is evaluated using the bag model and the nonrelativistic quark model. We find that bottom-baryon lifetimes follow the pattern τ(Ωb)≃τ(Ξb−)>τ(Λb)≃τ(Ξb0)\tau(\Omega_b)\simeq\tau(\Xi_b^-)>\tau(\Lambda_b)\simeq\tau(\Xi_b^0). However, neither the lifetime ratio τ(Λb)/τ(Bd)\tau(\Lambda_b)/\tau( B_d) nor the absolute decay rates of the Λb\Lambda_b baryon and BB mesons can be explained. One way of solving both difficulties is to allow the presence of linear 1/mQ1/m_Q corrections by scaling the inclusive nonleptonic width with the fifth power of the hadron mass mHQm_{H_Q} rather than the heavy quark mass mQm_Q. The hierarchy of bottom baryon lifetimes is dramatically modified to τ(Λb)>τ(Ξb−)>τ(Ξb0)>τ(Ωb)\tau(\Lambda_b)>\tau(\Xi_b^-)>\tau(\Xi_b^0)>\tau( \Omega_b): The longest-lived Ωb\Omega_b among bottom baryons in the OPE prescription now becomes shortest-lived. The replacement of mQm_Q by mHQm_{H_Q} in nonleptonic widths is natural and justified in the PQCD-based factorization approach formulated in terms of hadron-level kinematics. For inclusive charmed baryon decays, we argue that since the heavy quark expansion does not converge, local duality cannot be tested in this case. We show that while the ansatz of substituting the heavy quark mass by the hadron mass provides a much better description of the charmed-baryon lifetime {\it ratios}, it appears unnatural and unpredictive for describing the {\it absolute} inclusive decay rates of charmed baryons, contrary to the bottom case.Comment: 35 pages, to appear in Phys. Rev. The CDF result on the lifetime ratio of Lambda_b and B_d is discusse

    Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun-like Star

    Get PDF
    A search of the time-series photometry from NASA's Kepler spacecraft reveals a transiting planet candidate orbiting the 11th magnitude G5 dwarf KIC 10593626 with a period of 290 days. The characteristics of the host star are well constrained by high-resolution spectroscopy combined with an asteroseismic analysis of the Kepler photometry, leading to an estimated mass and radius of 0.970 +/- 0.060 MSun and 0.979 +/- 0.020 RSun. The depth of 492 +/- 10ppm for the three observed transits yields a radius of 2.38 +/- 0.13 REarth for the planet. The system passes a battery of tests for false positives, including reconnaissance spectroscopy, high-resolution imaging, and centroid motion. A full BLENDER analysis provides further validation of the planet interpretation by showing that contamination of the target by an eclipsing system would rarely mimic the observed shape of the transits. The final validation of the planet is provided by 16 radial velocities obtained with HIRES on Keck 1 over a one year span. Although the velocities do not lead to a reliable orbit and mass determination, they are able to constrain the mass to a 3{\sigma} upper limit of 124 MEarth, safely in the regime of planetary masses, thus earning the designation Kepler-22b. The radiative equilibrium temperature is 262K for a planet in Kepler-22b's orbit. Although there is no evidence that Kepler-22b is a rocky planet, it is the first confirmed planet with a measured radius to orbit in the Habitable Zone of any star other than the Sun.Comment: Accepted to Ap

    TOI-1268b: The youngest hot Saturn-mass transiting exoplanet

    Get PDF
    We report the discovery of TOI-1268b, a transiting Saturn-mass planet from the TESS space mission. With an age of less than 1 Gyr, derived from various age indicators, TOI-1268b is the youngest Saturn-mass planet known to date; it contributes to the small sample of well-characterised young planets. It has an orbital period of P = 8.1577080 \ub1 0.0000044 days, and transits an early K-dwarf star with a mass of M∗ = 0.96 \ub1 0.04 M+, a radius of R∗ = 0.92 \ub1 0.06 R+, an effective temperature of Teff = 5300 \ub1 100 K, and a metallicity of 0.36 \ub1 0.06 dex. By combining TESS photometry with high-resolution spectra acquired with the Tull spectrograph at the McDonald Observatory, and the high-resolution spectrographs at the Tautenburg and OndR ejov Observatories, we measured a planetary mass of Mp = 96.4 \ub1 8.3 Mp and a radius of Rp = 9.1 \ub1 0.6 Rp. TOI-1268 is an ideal system for studying the role of star-planet tidal interactions for non-inflated Saturn-mass planets. We used system parameters derived in this paper to constrain the planeta\u27s tidal quality factor to the range of 104.5-5.3. When compared with the sample of other non-inflated Saturn-mass planets, TOI-1268b is one of the best candidates for transmission spectroscopy studies

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 \ub1 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 \ub1 0.41 M⊕, 33.12 \ub1 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    High-spin states in 179Au: Spectroscopy of shape-driving orbitals beyond the neutron midshell

    Get PDF
    Multiple band structures in 179Au are established from Îł-ray spectroscopic measurements with Gammasphere at the Argonne Fragment Mass Analyzer. The yrast band, based on the 13/2+ proton, confirms the predicted drop in excitation energy of the prolate deformed band head as compared to the heavier isotopes. The implications for the prolate energy minimum in odd-mass Au nuclei beyond the neutron i13/2 midshell (N<102) are discussed

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore