2,088 research outputs found

    Influence of Fallen Tree Timing on Spruce Beetle Brood Production

    Get PDF
    This study compared brood production of the spruce beetle (Dendroctonus rufipennis Kirby [Coleoptera: Curculionidae, Scolytinae]) in downed host material felled during summer and spring seasons on the Wasatch Plateau in south central Utah. Thirty-three matched pairs of Engelmann spruce (Picea engelmannii Parry ex Engelm.) trees were selected for study in spring 1996. One tree of each pair was cut during August 1996 (summer-felled), and the other tree was cut in early April 1997 (spring-felled), so that trees would be colonized by spruce beetles of the same flight period. Brood adults were collected and counted from bark samples, which were removed from the top, bottom, and sides of all sample trees in October 1998. The number of emergent adults produced in June 1999 was determined from exit holes counted in bark samples removed from these same locations. Mixed-model procedures were used to compare differences in the mean number of adults produced in summer-felled versus spring-felled trees in each year. The results indicated that significantly fewer spruce beetles were produced in summer-felled trees than in spring-felled trees. More brood adults were also present in, or emerged from, unexposed bole aspects (bottom, north, and east) of sample trees than exposed aspects (top, south, and west). These findings suggest that disturbances providing spruce beetles with an abundance of fresh host material in the spring result in the greatest potential for spruce beetle production, particularly beneath unexposed bark aspects. Examples of such disturbances include snow avalanches, blowdown, and snow and ice damage

    Mechanical behavior and failure phenomenon of an in situ-toughened silicon nitride

    Get PDF
    The Weibull modulus, fracture toughness and crack growth resistance of an in-situ toughened, silicon nitride material used to manufacture a turbine combustor were determined from room temperature to 1371 C. The material exhibited an elongated grain structure that resulted in improved fracture toughness, nonlinear crack growth resistance, and good elevated temperature strength. However, low temperature strength was limited by grains of excessive length (30 to 100 microns). These excessively long grains were surrounded by regions rich in sintering additives

    ASTM Committee C28: International Standards for Properties and Performance of Advanced Ceramics-Three Decades of High-Quality, Technically-Rigorous Normalization

    Get PDF
    Physical and mechanical properties and performance of advanced ceramics and glasses are difficult to measure correctly without the proper techniques. For over three decades, ASTM Committee C28 on Advanced Ceramics, has developed high-quality, technically-rigorous, full-consensus standards (e.g., test methods, practices, guides, terminology) to measure properties and performance of monolithic and composite ceramics that may be applied to glasses in some cases. These standards contain testing particulars for many mechanical, physical, thermal, properties and performance of these materials. As a result these standards are used to generate accurate, reliable, repeatable and complete data. Within Committee C28, users, producers, researchers, designers, academicians, etc. have written, continually updated, and validated through round-robin test programs, 50 standards since the Committee's founding in 1986. This paper provides a detailed retrospective of the 30 years of ASTM Committee C28 including a graphical pictogram listing of C28 standards along with examples of the tangible benefits of standards for advanced ceramics to demonstrate their practical applications

    Fracture resistance of a TiB2 particle/SiC matrix composite at elevated temperature

    Get PDF
    The fracture resistance of a comercial TiB2 particle/SiC matrix composite was evaluated at temperatures ranging from 20 to 1400 C. A laser interferometric strain gauge (LISG) was used to continuously monitor the crack mouth opening displacement (CMOD) of the chevron-notched and straight-notched, three-point bend specimens used. Crack growth resistance curves (R-curves) were determined from the load versus displacement curves and displacement calibrations. Fracture toughness, work-of-fracture, and R-curve levels were found to decrease with increasing temperature. Microstructure, fracture surface, and oxidation coat were examined to explain the fracture behavior

    Effect of different repeated-high-intensity-effort bouts on subsequent running, skill performance, and neuromuscular function

    Get PDF
    Purpose: To assess the impact of different repeated-high-intensity-effort (RHIE) bouts on player activity profiles, skill involvements, and neuromuscular fatigue during small-sided games. Participants: 22 semiprofessional rugby league players (age 24.0 ± 1.8 y, body mass 95.6 ± 7.4 kg). Methods: During 4 testing sessions, they performed RHIE bouts that each differed in the combination of contact and running efforts, followed by a 5-min off-side small-sided game before performing a second bout of RHIE activity and another 5-min small-sided game. Global positioning system microtechnology and video recordings provided information on activity profiles and skill involvements. A countermovement jump and a plyometric push-up assessed changes in lower- And upper-body neuromuscular function after each session. Results: After running-dominant RHIE bouts, players maintained running intensities during both games. In the contact-dominant RHIE bouts, reductions in moderate-speed activity were observed from game 1 to game 2 (ES = -0.71 to -1.06). There was also moderately lower disposal efficiency across both games after contact-dominant RHIE activity compared with running-dominant activity (ES = 0.62-1.02). Greater reductions in lower-body fatigue occurred as RHIE bouts became more running dominant (ES = -0.01 to -1.36), whereas upper-body fatigue increased as RHIE bouts became more contact dominant (ES = -0.07 to -1.55). Conclusions: Physical contact causes reductions in running intensity and the quality of skill involvements during game-based activities. In addition, the neuromuscular fatigue experienced by players is specific to the activities performed

    The Delta-resonance in a finite volume

    Full text link
    We study the extraction of Delta-resonance parameters from lattice data for small quark masses, corresponding to the case of an unstable Delta. To this end, we calculate the spectrum of the correlator of two Delta-fields in a finite Euclidian box up-to-and-including O(epsilon^3) in the small scale expansion using infrared regularization. On the basis of our numerical study, we argue that the extraction of the parameters of the Delta-resonance (in particular, of the mass and the pion-nucleon-delta coupling constant) from the measured volume dependence of the lowest energy levels should be feasible.Comment: 20 pages, 8 postscript figure

    Attempted density blowup in a freely cooling dilute granular gas: hydrodynamics versus molecular dynamics

    Full text link
    It has been recently shown (Fouxon et al. 2007) that, in the framework of ideal granular hydrodynamics (IGHD), an initially smooth hydrodynamic flow of a granular gas can produce an infinite gas density in a finite time. Exact solutions that exhibit this property have been derived. Close to the singularity, the granular gas pressure is finite and almost constant. This work reports molecular dynamics (MD) simulations of a freely cooling gas of nearly elastically colliding hard disks, aimed at identifying the "attempted" density blowup regime. The initial conditions of the simulated flow mimic those of one particular solution of the IGHD equations that exhibits the density blowup. We measure the hydrodynamic fields in the MD simulations and compare them with predictions from the ideal theory. We find a remarkable quantitative agreement between the two over an extended time interval, proving the existence of the attempted blowup regime. As the attempted singularity is approached, the hydrodynamic fields, as observed in the MD simulations, deviate from the predictions of the ideal solution. To investigate the mechanism of breakdown of the ideal theory near the singularity, we extend the hydrodynamic theory by accounting separately for the gradient-dependent transport and for finite density corrections.Comment: 11 pages, 9 figures, accepted for publication on Physical Review

    Quenched Chiral Perturbation Theory for Vector Mesons

    Get PDF
    We develop quenched chiral perturbation theory for vector mesons made of light quarks, in the limit where the vector meson masses are much larger than the pion mass. We use this theory to extract the leading nonanalytic dependence of the vector meson masses on the masses of the light quarks. By comparing with analogous quantities computed in ordinary chiral perturbation theory, we estimate the size of quenching effects, observing that in general they can be quite large. This estimate is relevant to lattice simulations, where the ρ\rho mass is often used to set the lattice spacing.Comment: 18 pages, 8 figures, uses REVTeX and epsf.st

    The Kepler Pixel Response Function

    Full text link
    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal to noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for publication
    corecore