40 research outputs found

    Genome editing in poultry - opportunities and impacts

    Get PDF
    Poultry products (meat and eggs) are a major source of animal protein on which the world is increasingly reliant to feed a rapidly growing population. Improved breeds and advances in farm management practices have had a large impact on the poultry industry. For example, using current genetic stock and production practices, broiler chickens can weigh 2 kg in about 34 days. Forty-five years ago it would have typically taken over 60 days. These impressive advances have been made using traditional selective breeding methods and more recently by using genomics. Now, with the availability of precision genome engineering tools there are new opportunities to improve poultry production above and beyond those achievable by traditional means. One major opportunity is disease resilience, particularly for viral diseases such as avian influenza that has devastating impacts on the poultry industry. Resilience to specific diseases can be a notoriously difficult trait to select for using traditional breeding and the latest technologies that precisely edit the genome have created new ways to address this challenge

    Visualising single molecules of HIV-1 and miRNA nucleic acids

    Get PDF
    BackgroundThe scarcity of certain nucleic acid species and the small size of target sequences such as miRNA, impose a significant barrier to subcellular visualization and present a major challenge to cell biologists. Here, we offer a generic and highly sensitive visualization approach (oligo fluorescent in situ hybridization, O-FISH) that can be used to detect such nucleic acids using a single-oligonucleotide probe of 19–26 nucleotides in length.ResultsWe used O-FISH to visualize miR146a in human and avian cells. Furthermore, we reveal the sensitivity of O-FISH detection by using a HIV-1 model system to show that as little as 1–2 copies of nucleic acids can be detected in a single cell. We were able to discern newly synthesized viral cDNA and, moreover, observed that certain HIV RNA sequences are only transiently available for O-FISH detection.ConclusionsTaken together, these results suggest that the O-FISH method can potentially be used for in situ probing of, as few as, 1–2 copies of nucleic acid and, additionally, to visualize small RNA such as miRNA. We further propose that the O-FISH method could be extended to understand viral function by probing newly transcribed viral intermediates; and discern the localisation of nucleic acids of interest. Additionally, interrogating the conformation and structure of a particular nucleic acid in situ might also be possible, based on the accessibility of a target sequence

    Agriculture, nutrition and education: On the status and determinants of primary schooling in rural Mali before the crises of 2012

    Get PDF
    This cross-sectional study examines the status and the determinants of primary education in food insecure areas of Mali. Net and gross enrolment ratios in primary school were between 0.3 and 0.4 for both girls and boys and well below national levels, highlighting a critical gap in terms of access to primary education. Schooling was found to respond to a broad range of determinants, including child's age and nutrition status, as well as on household consumption, on farm labour, teacher availability, and village level remoteness. Interestingly, no significant gender differences were found in terms of primary education. School meals were found to be associated with increased enrolment, attendance and attainment. The scale of the problem in Mali strongly suggests the need for investments in education and social protection to be prioritised and funded as part of national education policy and development strategies

    The many possible climates from the Paris Agreement’s aim of 1.5 °C warming

    Get PDF
    The United Nations’ Paris Agreement includes the aim of pursuing efforts to limit global warming to only 1.5 °C above pre-industrial levels. However, it is not clear what the resulting climate would look like across the globe and over time. Here we show that trajectories towards a ‘1.5 °C warmer world’ may result in vastly different outcomes at regional scales, owing to variations in the pace and location of climate change and their interactions with society’s mitigation, adaptation and vulnerabilities to climate change. Pursuing policies that are considered to be consistent with the 1.5 °C aim will not completely remove the risk of global temperatures being much higher or of some regional extremes reaching dangerous levels for ecosystems and societies over the coming decades

    Harnessing Intronic microRNA Structures to Improve Tolerance and Expression of shRNAs in Animal Cells

    No full text
    Exogenous RNA polymerase III (pol III) promoters are commonly used to express short hairpin RNA (shRNA). Previous studies have indicated that expression of shRNAs using standard pol III promoters can cause toxicity in vivo due to saturation of the native miRNA pathway. A potential way of mitigating shRNA-associated toxicity is by utilising native miRNA processing enzymes to attain tolerable shRNA expression levels. Here, we examined parallel processing of exogenous shRNAs by harnessing the natural miRNA processing enzymes and positioning a shRNA adjacent to microRNA107 (miR107), located in the intron 5 of the Pantothenate Kinase 1 (PANK1) gene. We developed a vector encoding the PANK1 intron containing miR107 and examined the expression of a single shRNA or multiple shRNAs. Using qRT-PCR analysis and luciferase assay-based knockdown assay, we confirmed that miR30-structured shRNAs have resulted in the highest expression and subsequent transcript knockdown. Next, we injected Hamburger and Hamilton stage 14–15 chicken embryos with a vector encoding multiple shRNAs and confirmed that the parallel processing was not toxic. Taken together, this data provides a novel strategy to harness the native miRNA processing pathways for shRNA expression. This enables new opportunities for RNAi based applications in animal species such as chickens

    Innovative approaches to genome editing in avian species

    No full text
    Abstract The tools available for genome engineering have significantly improved over the last 5 years, allowing scientist to make precise edits to the genome. Along with the development of these new genome editing tools has come advancements in technologies used to deliver them. In mammals genome engineering tools are typically delivered into in vitro fertilized single cell embryos which are subsequently cultured and then implanted into a recipient animal. In avian species this is not possible, so other methods have been developed for genome engineering in birds. The most common involves in vitro culturing of primordial germ cells (PGCs), which are cells that migrate through the embryonic circulatory system to the developing gonad and colonize the gonad, eventually differentiating into the gonadocytes which produce either sperm or ova. While in culture the PGCs can be modified to carry novel transgenes or gene edits, the population can be screened and enriched, and then transferred into a recipient embryo. The largest drawback of PGC culture is that culture methods do not transfer well across avian species, thus there are reliable culture methods for only a few species including the chicken. Two newer technologies that appear to be more easily adapted in a wider range of avian species are direct injection and sperm transfection assisted gene editing (STAGE). The direct injection method involves injecting genome engineering tools into the circulatory system of the developing embryo just prior to the developmental time point when the PGCs are migrating to the gonads. The genome engineering tools are complexed with transfection reagents, allowing for in vivo transfection of the PGCs. STAGE utilizes sperm transfection to deliver genome engineering tools directly to the newly fertilized embryo. Preliminary evidence indicates that both methodologies have the potential to be adapted for use in birds species other than the chicken, however further work is needed in this area
    corecore