1,040 research outputs found

    Improving Photometry and Stellar Signal Preservation with Pixel-Level Systematic Error Correction

    Get PDF
    The Kepler Mission has demonstrated that excellent stellar photometric performance can be achieved using apertures constructed from optimally selected CCD pixels. The clever methods used to correct for systematic errors, while very successful, still have some limitations in their ability to extract long-term trends in stellar flux. They also leave poorly correlated bias sources, such as drifting moir pattern, uncorrected. We will illustrate several approaches where applying systematic error correction algorithms to the pixel time series, rather than the co-added raw flux time series, provide significant advantages. Examples include, spatially localized determination of time varying moir pattern biases, greater sensitivity to radiation-induced pixel sensitivity drops (SPSDs), improved precision of co-trending basis vectors (CBV), and a means of distinguishing the stellar variability from co-trending terms even when they are correlated. For the last item, the approach enables physical interpretation of appropriately scaled coefficients derived in the fit of pixel time series to the CBV as linear combinations of various spatial derivatives of the pixel response function (PRF). We demonstrate that the residuals of a fit of soderived pixel coefficients to various PRF-related components can be deterministically interpreted in terms of physically meaningful quantities, such as the component of the stellar flux time series which is correlated with the CBV, as well as, relative pixel gain, proper motion and parallax. The approach also enables us to parameterize and assess the limiting factors in the uncertainties in these quantities

    Kepler Mission Stellar and Instrument Noise Properties Revisited

    Full text link
    An earlier study of the Kepler Mission noise properties on time scales of primary relevance to detection of exoplanet transits found that higher than expected noise followed to a large extent from the stars, rather than instrument or data analysis performance. The earlier study over the first six quarters of Kepler data is extended to the full four years ultimately comprising the mission. Efforts to improve the pipeline data analysis have been successful in reducing noise levels modestly as evidenced by smaller values derived from the current data products. The new analyses of noise properties on transit time scales show significant changes in the component attributed to instrument and data analysis, with essentially no change in the inferred stellar noise. We also extend the analyses to time scales of several days, instead of several hours to better sample stellar noise that follows from magnetic activity. On the longer time scale there is a shift in stellar noise for solar-type stars to smaller values in comparison to solar values.Comment: 10 pages, 8 figures, accepted by A

    Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves

    Full text link
    Kepler provides light curves of 156,000 stars with unprecedented precision. However, the raw data as they come from the spacecraft contain significant systematic and stochastic errors. These errors, which include discontinuities, systematic trends, and outliers, obscure the astrophysical signals in the light curves. To correct these errors is the task of the Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline. The original version of PDC in Kepler did not meet the extremely high performance requirements for the detection of miniscule planet transits or highly accurate analysis of stellar activity and rotation. One particular deficiency was that astrophysical features were often removed as a side-effect to removal of errors. In this paper we introduce the completely new and significantly improved version of PDC which was implemented in Kepler SOC 8.0. This new PDC version, which utilizes a Bayesian approach for removal of systematics, reliably corrects errors in the light curves while at the same time preserving planet transits and other astrophysically interesting signals. We describe the architecture and the algorithms of this new PDC module, show typical errors encountered in Kepler data, and illustrate the corrections using real light curve examples.Comment: Submitted to PASP. Also see companion paper "Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction" by Jeff C. Smith et a

    Kepler Mission Stellar and Instrument Noise Properties

    Get PDF
    Kepler Mission results are rapidly contributing to fundamentally new discoveries in both the exoplanet and asteroseismology fields. The data returned from Kepler are unique in terms of the number of stars observed, precision of photometry for time series observations, and the temporal extent of high duty cycle observations. As the first mission to provide extensive time series measurements on thousands of stars over months to years at a level hitherto possible only for the Sun, the results from Kepler will vastly increase our knowledge of stellar variability for quiet solar-type stars. Here we report on the stellar noise inferred on the timescale of a few hours of most interest for detection of exoplanets via transits. By design the data from moderately bright Kepler stars are expected to have roughly comparable levels of noise intrinsic to the stars and arising from a combination of fundamental limitations such as Poisson statistics and any instrument noise. The noise levels attained by Kepler on-orbit exceed by some 50% the target levels for solar-type, quiet stars. We provide a decomposition of observed noise for an ensemble of 12th magnitude stars arising from fundamental terms (Poisson and readout noise), added noise due to the instrument and that intrinsic to the stars. The largest factor in the modestly higher than anticipated noise follows from intrinsic stellar noise. We show that using stellar parameters from galactic stellar synthesis models, and projections to stellar rotation, activity and hence noise levels reproduces the primary intrinsic stellar noise features.Comment: Accepted by ApJ; 26 pages, 20 figure

    Detection of Potential Transit Signals in the First Three Quarters of Kepler Mission Data

    Full text link
    We present the results of a search for potential transit signals in the first three quarters of photometry data acquired by the Kepler Mission. The targets of the search include 151,722 stars which were observed over the full interval and an additional 19,132 stars which were observed for only 1 or 2 quarters. From this set of targets we find a total of 5,392 detections which meet the Kepler detection criteria: those criteria are periodicity of the signal, an acceptable signal-to-noise ratio, and a composition test which rejects spurious detections which contain non-physical combinations of events. The detected signals are dominated by events with relatively low signal-to-noise ratio and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 40 and 100 parts per million, with a few detections down to fewer than 10 parts per million. The detected signals are compared to a set of known transit events in the Kepler field of view which were derived by a different method using a longer data interval; the comparison shows that the current search correctly identified 88.1% of the known events. A tabulation of the detected transit signals, examples which illustrate the analysis and detection process, a discussion of future plans and open, potentially fruitful, areas of further research are included

    Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction

    Full text link
    With the unprecedented photometric precision of the Kepler Spacecraft, significant systematic and stochastic errors on transit signal levels are observable in the Kepler photometric data. These errors, which include discontinuities, outliers, systematic trends and other instrumental signatures, obscure astrophysical signals. The Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline tries to remove these errors while preserving planet transits and other astrophysically interesting signals. The completely new noise and stellar variability regime observed in Kepler data poses a significant problem to standard cotrending methods such as SYSREM and TFA. Variable stars are often of particular astrophysical interest so the preservation of their signals is of significant importance to the astrophysical community. We present a Bayesian Maximum A Posteriori (MAP) approach where a subset of highly correlated and quiet stars is used to generate a cotrending basis vector set which is in turn used to establish a range of "reasonable" robust fit parameters. These robust fit parameters are then used to generate a Bayesian Prior and a Bayesian Posterior Probability Distribution Function (PDF) which when maximized finds the best fit that simultaneously removes systematic effects while reducing the signal distortion and noise injection which commonly afflicts simple least-squares (LS) fitting. A numerical and empirical approach is taken where the Bayesian Prior PDFs are generated from fits to the light curve distributions themselves.Comment: 43 pages, 21 figures, Submitted for publication in PASP. Also see companion paper "Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves" by Martin C. Stumpe, et a

    What is the Total Deuterium Abundance in the Local Galactic Disk?

    Get PDF
    Analyses of spectra obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, together with spectra from the Copernicus and IMAPS instruments, reveal an unexplained very wide range in the observed deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk beyond the Local Bubble. We argue that spatial variations in the depletion of deuterium onto dust grains can explain these local variations in the observed gas-phase D/H ratios. We present a variable deuterium depletion model that naturally explains the constant measured values of D/H inside the Local Bubble, the wide range of gas-phase D/H ratios observed in the intermediate regime (log N(H I} = 19.2-20.7), and the low gas-phase D/H ratios observed at larger hydrogen column densities. We consider empirical tests of the deuterium depletion hypothesis: (i) correlations of gas-phase D/H ratios with depletions of the refractory metals iron and silicon, and (ii) correlation with the molecular hydrogen rotational temperature. Both of these tests are consistent with deuterium depletion from the gas phase in cold, not recently shocked, regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked or otherwise heated recently. We argue that the most representative value for the total (gas plus dust) D/H ratio within 1 kpc of the Sun is >=23.1 +/- 2.4 (1 sigma) parts per million (ppm). This ratio constrains Galactic chemical evolution models to have a very small deuterium astration factor, the ratio of primordial to total (D/H) ratio in the local region of the Galactic disk, which we estimate to be f_d <= 1.19 +/-0.16 (1 sigma) or <= 1.12 +/- 0.14 (1 sigma) depending on the adopted light element nuclear reaction rates.Comment: 19 pages, 9 figure

    TESS Data Release Notes: Sector 18 DR25

    Get PDF
    This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 18 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics

    TESS Data Release Notes: Sector 17, DR24

    Get PDF
    This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 17 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics

    The Subduction experiment : cruise report RRS Charles Darwin cruise number 73 subduction 3 mooring deployment and recovery cruise, 30 September-26 October 1992

    Get PDF
    Subduction is the mechanism by which water masses formed in the mixed layer and near the surface of the ocean find their way into the upper thermocline. The subduction process and its underlying mechanisms were studied through a combination of Eulerian and Langrangian measurements of velocity, measurements of tracer distrbutions and hydrographic properties and modeling. An array of five surface moorings carrying meteorological and oceanographic instrumentation were deployed for a period of two years beginning in June 1991 as part of an Office of Naval Research (ONR) funded Subduction experiment. Three eight month deployments were planned. The moorings were deployed at 18°N 34°W, 18°N 22°W, 25.5°N 29°W, 33°N 22°W and 33°N 34°W. A Vector Averaging Wind Recorder (VAWR) and an Improved Meteorological Recorder (IMET) collected wind speed and wind direction, sea surface temperature, air temperature, short wave radiation, barometric pressure and relative humidity. The IMET also measured precipitation. The moorings were heavily instrumented below the surface with Vector Measuring Current Meters (VMCM), and single point temperature recorders. Expendable bathythermograph (XBT) data were collected and meteorological observations were made while transitting between mooring locations. In addition a series of 59 cm stations were made and water samples taken to be analyzed for tritium levels, salinity and dissolved oxygen content. This report describes the work that took place during RRS Charles Darwin cruise number 73 which was the third scheduled Subduction mooring cruise. During this cruise the second setting of the moorings were recovered and redeployed for a third eight month period. This report includes a description of the instrumentation that was deployed and recovered, has information about the underway measurements (XBT and meteorological observations) that were made including plots of the data, includes a description of the work conducted in conjunction with the tracer/hydrography program and presents a chronology of the cruise events.Funding was provided by the Office of Naval Research under contract N00014-90-J-1490
    corecore