895 research outputs found

    The National Security Council and the Iran-Contra Affair

    Full text link

    A Sub-Damped Lyα\alpha Absorber with Unusual Abundances: Evidence of Gas Recycling in a Low-Redshift Galaxy Group

    Full text link
    Using Hubble Space Telescope/Space Telescope Imaging Spectrograph G140M spectroscopy, we investigate an absorption-line system at zz=0.07489 in the spectrum of the quasi-stellar object PG 1543+489 (zQSOz_{QSO}=0.401). The sightline passes within ρ=66\rho = 66 kpc of an edge-on 2L2L^* disk galaxy at a similar redshift, but the galaxy belongs to a group with four other galaxies within ρ=160\rho =160 kpc. We detect H I [log NN(H I/cm2cm^{-2}) = 19.12±\pm0.04] as well as N I, Mg II, Si II, and Si III, from which we measure a gas-phase abundance of [N/H] = 1.0±0.1-1.0\pm 0.1. Photoionization models indicate that the nitrogen-to-silicon relative abundance is solar, yet magnesium is underabundant by a factor of \approx 2. We also report spatially resolved emission-line spectroscopy of the nearby galaxy, and we extract its rotation curve. The galaxy's metallicity is 8×\approx 8 \times higher than [N/H] in the absorber, and interestingly, the absorber velocities suggest that the gas at ρ=\rho = 66 kpc is corotating with the galaxy's stellar disk, possibly with an inflow component. These characteristics could indicate that this sub-damped Lyα\alpha absorber system arises in a "cold-accretion" flow. However, the absorber abundance patterns are peculiar. We hypothesize that the gas was ejected from its galaxy of origin (or perhaps is a result of tidal debris from interactions between the group galaxies) with a solar nitrogen abundance, but that subsequently mixed with (and was diluted by) gas in the circumgalactic medium (CGM) or group. If the gas is bound to the nearby galaxy, this system may be an example of the gas "recycling" predicted by theoretical galaxy simulations. Our hypothesis is testable with future observations.Comment: 16 pages (in print): The Astrophysical Journal, vol 872, 12

    Experimental analysis of thread movement in bolted connections due to vibrations

    Get PDF
    This is the final report of research project NAS8-39131 #33 sponsored by NASA's George C. Marshall Space Flight Center (MSFC) and carried out by the Civil Engineering Department of Auburn University (Auburn, Alabama) and personnel of MSFC. The objective of this study was to identify the main design parameters contributing to the loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and a percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration, and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration

    Experimental analysis of thread movement in bolted connections due to vibrations

    Get PDF
    The objective of this study was to identify the main design parameters contributing to loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration

    Method Validation Approaches for Pharmaceutical Assessments – Highlights with High Performance Thin Layer Chromatographic (HPTLC) Techniques

    Get PDF
    Method validation is an important activity for pharmaceutical evaluations to ensure that analytical methods are suitable for their intended use. With particular focus on active ingredient and impurities, the implementation of different categories of method validation are explained for qualitative and quantitative methods. Detailed explanations with example approaches are provided for the key aspects of method validation, namely specificity, accuracy, linearity, limits of detection/quantitation, precision, robustness, and method range. While all of the sections outlined for method validation are generally applicable for a variety of techniques commonly used in pharmaceutical analysis (i.e., UV and HPLC instrumentation), focused attention is provided for examples that have been implemented using high performance thin layer chromatographic techniques

    Development of an Extra-vehicular (EVA) Infrared (IR) Camera Inspection System

    Get PDF
    Designed to fulfill a critical inspection need for the Space Shuttle Program, the EVA IR Camera System can detect crack and subsurface defects in the Reinforced Carbon-Carbon (RCC) sections of the Space Shuttle s Thermal Protection System (TPS). The EVA IR Camera performs this detection by taking advantage of the natural thermal gradients induced in the RCC by solar flux and thermal emission from the Earth. This instrument is a compact, low-mass, low-power solution (1.2cm3, 1.5kg, 5.0W) for TPS inspection that exceeds existing requirements for feature detection. Taking advantage of ground-based IR thermography techniques, the EVA IR Camera System provides the Space Shuttle program with a solution that can be accommodated by the existing inspection system. The EVA IR Camera System augments the visible and laser inspection systems and finds cracks and subsurface damage that is not measurable by the other sensors, and thus fills a critical gap in the Space Shuttle s inspection needs. This paper discusses the on-orbit RCC inspection measurement concept and requirements, and then presents a detailed description of the EVA IR Camera System design

    A Latent Model for Prioritization of SNPs for Functional Studies

    Get PDF
    One difficult question facing researchers is how to prioritize SNPs detected from genetic association studies for functional studies. Often a list of the top M SNPs is determined based on solely the p-value from an association analysis, where M is determined by financial/time constraints. For many studies of complex diseases, multiple analyses have been completed and integrating these multiple sets of results may be difficult. One may also wish to incorporate biological knowledge, such as whether the SNP is in the exon of a gene or a regulatory region, into the selection of markers to follow-up. In this manuscript, we propose a Bayesian latent variable model (BLVM) for incorporating “features” about a SNP to estimate a latent “quality score”, with SNPs prioritized based on the posterior probability distribution of the rankings of these quality scores. We illustrate the method using data from an ovarian cancer genome-wide association study (GWAS). In addition to the application of the BLVM to the ovarian GWAS, we applied the BLVM to simulated data which mimics the setting involving the prioritization of markers across multiple GWAS for related diseases/traits. The top ranked SNP by BLVM for the ovarian GWAS, ranked 2nd and 7th based on p-values from analyses of all invasive and invasive serous cases. The top SNP based on serous case analysis p-value (which ranked 197th for invasive case analysis), was ranked 8th based on the posterior probability of being in the top 5 markers (0.13). In summary, the application of the BLVM allows for the systematic integration of multiple SNP “features” for the prioritization of loci for fine-mapping or functional studies, taking into account the uncertainty in ranking

    Forming double-barred galaxies from dynamically cool inner disks

    Get PDF
    About one-third of early-type barred galaxies host small-scale secondary bars. The formation and evolution of such double-barred (S2B) galaxies remain far from being well understood. In order to understand the formation of such systems, we explore a large parameter space of isolated pure-disk simulations. We show that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady secondary bar while the outer disk forms a large-scale primary bar. The independent bar instabilities of inner and outer disks result in long-lived double-barred structures whose dynamical properties are comparable to those in observations. This formation scenario indicates that the secondary bar might form from the general bar instability, the same as the primary bar. Under some circumstances, the interaction of the bars and the disk leads to the two bars aligning or single, nuclear, bars only. Simulations that are cool enough of the center to experience clump instabilities may also generate steady S2B galaxies. In this case, the secondary bars are “fast,” i.e., the bar length is close to the co-rotation radius. This is the first time that S2B galaxies containing a fast secondary bar are reported. Previous orbit-based studies had suggested that fast secondary bars were not dynamically possibl
    corecore