7 research outputs found

    NOAO Fundamental Plane Survey. II. Age and Metallicity along the Red Sequence from Line‐Strength Data

    Get PDF
    We present spectroscopic line-strength data for 4097 red-sequence galaxies in 93 low-redshift galaxy clusters and use these to investigate variations in average stellar populations as a function of galaxy mass. Our analysis includes an improved treatment of nebular emission contamination, which affects ~10% of the sample galaxies. Using the stellar population models of D. Thomas and collaborators, we simultaneously fit 12 observed line-strength-σ relations in terms of common underlying trends of age, [Z/H] (total metallicity), and [α/Fe] (α-element enhancement). We find that the observed line-strength-σ relations can be explained only if higher mass red-sequence galaxies are, on average, older, more metal-rich, and more α-enhanced than lower mass galaxies. Quantitatively, the scaling relations are age ∝ σ0.59±0.13, Z/H ∝ σ0.53±0.08, and α/Fe ∝ σ0.31±0.06, where the errors reflect the range obtained using different subsets of indices. Our conclusions are not strongly dependent on which Balmer lines are used as age indicators. The derived age-σ relation is such that if the largest (σ ~ 400 km s-1) galaxies formed their stars ~13 Gyr ago, then the mean age of low-mass (σ ~ 50 km s-1) objects is only ~4 Gyr. The data also suggest a large spread in age at the low-mass end of the red sequence, with 68% of the galaxies having ages between 2 and 8 Gyr. We conclude that although the stars in giant red galaxies in clusters formed early, most of the galaxies at the faint end joined the red sequence only at recent epochs. This downsizing trend is in good qualitative agreement with observations of the red sequence at higher redshifts but is not predicted by semianalytic models of galaxy formation

    Heavy‐Element Diffusion in Metal‐poor Stars

    Get PDF
    Stellar evolution models that include the effect of helium and heavy-element diffusion have been calculated for initial iron abundances of [Fe/H] = -2.3, -2.1, -1.9, and -1.7. These models were calculated for a large variety of masses and three separate mixing lengths, α = 1.50, 1.75, and 2.00 (with α = 1.75 being the solar calibrated mixing length). The change in the surface iron abundance for stars of different masses was determined for the ages of 11, 13, and 15 Gyr. Iron settles out of the surface convection zone on the main sequence ; this iron is dredged back up when the convection zone deepens on the giant branch. In all cases, the surface [Fe/H] abundance in the turnoff stars was at least 0.28 dex lower than the surface [Fe/H] abundance in giant branch stars of the same age. However, Gratton et al. recently found, based on high-dispersion spectra of stars in the globular cluster NGC 6397, that the turnoff and giant branch stars had identical (within a few percent) iron abundances of [Fe/H] = -2.03. These observations prove that heavy-element diffusion must be inhibited in the surface layers of metal- poor stars. When diffusion is inhibited in the outer layers of a stellar model, the predicted temperatures of the models are similar to those of models evolved without diffusion, while the predicted lifetimes are similar to those of stars in which diffusion is not inhibited. Isochrones constructed from the models in which diffusion is inhibited fall halfway between isochrones without diffusion and isochrones with full diffusion. As a result, absolute globular cluster ages based upon the absolute magnitude of the turnoff are 4% larger than ages inferred from full-diffusion isochrones and 4% smaller than ages inferred from non-diffusion isochrones

    The Frequency of Tidal Features Associated with Nearby Luminous Elliptical Galaxies from a Statistically Complete Sample

    Full text link
    We present a deep broadband optical imaging study of a complete sample of luminous elliptical galaxies (M_B<-20) at distances 15 Mpc - 50 Mpc, selected from the Tully catalog of nearby galaxies. The images are flat to ~0.35% across the 20' field and reach a V band depth of 27.7 mag arcsec^-2. We derive an objective tidal interaction parameter for all galaxies and find that 73% of them show tidal disturbance signatures in their stellar bodies. This is the first time that such an analysis is done on a statistically complete sample and it confirms that tidal features in ellipticals are common even in the local Universe. From the dynamical time of the sample galaxies at the innermost radius where tidal features are detected we estimate the mass assembly rate of nearby ellipticals to be dM/M 0.2 per Gyr with large uncertainty. We explore the relation between gravitational interaction signatures and the galaxy environment and find that galaxies in clusters are less disturbed than group and field galaxies. We also study how these interactions affect the broadband colors of ellipticals and find a moderate correlation, suggesting that the mergers are not accompanied by significant star-formation. Lastly, we find no correlation between AGN activity, as measured by 6cm radio emission, and large scale tidal distortions. This implies that gravitational interactions are not the only, and perhaps not the most important, trigger of nuclear activity. In summary, we find that elliptical galaxies in groups and low density environments continue to grow at the present day through mostly "dry" mergers involving little star formation.Comment: Accepted for publication in AJ. Appendix and full dataset available online at: http://www.astro.yale.edu/obe

    Heavy Element Diffusion in Metal Poor Stars

    Get PDF
    Stellar evolution models which include the effect of helium and heavy element diffusion have been calculated for initial iron abundances of [Fe/H] = −2.3, −2.1, −1.9 and −1.7. These models were calculated for a large variety of masses and three separate mixing lengths, α = 1.50, 1.75 and 2.00 (with α = 1.75 being the solar calibrated mixing length). The change in the surface iron abundance for stars of different masses was determined for the ages 11, 13 and 15 Gyr. Iron settles out of the surface convection zone on the main sequence; this iron is dredged back up when the convection zone deepens on the giant branch. In all cases, the surface [Fe/H] abundance in the turn-off stars was at least 0.28 dex lower than the surface [Fe/H] abundance in giant-branch stars of the same age. However, recent high dispersion spectra of stars in the globular cluster NGC 6397 found that the turn-off and giant branch stars had identical (within a few percent) iron abundances of [Fe/H] = −2.03 (Gratton et al. 2001). These observations prove that heavy element diffusion must be inhibited in the surface layers of metal-poor stars. When diffusion is inhibited in the outer layers of a stellar model, the predicted temperatures of the models are similar to models evolved without diffusion, while the predicted lifetimes are similar to stars in which diffusion is not inhibited. Isochrones constructed from the models in which diffusion is inhibited fall half-way between isochrones without diffusion, and isochrones with full diffusion. As a result, absolute globular cluster ages which are based upon the absolute magnitude of the turn-off are 4 % larger than ages inferred from full diffusion isochrones, and 4 % smaller than ages inferred from no diffusion isochrones
    corecore