168 research outputs found

    Yield-Driven, False-Path-Aware Clock Skew Scheduling

    Full text link

    Training Effects of Virtual Reality on Reaching Behaviors in Children with Cerebral Palsy: Case Report

    Get PDF
    Virtual reality (VR) is a computer technology that artificially generates sensory information in a form that people perceive as real-world objects and events. It has been proposed that VR can improve upper-extremity function in children with cerebral palsy (CP) by decreasing physical disabilities, precisely adjusting the difficulty of task and feedback, enhancing motivation and manipulating perceptual information. The purpose of this study was to investigate the training effects of VR on reaching behavior in a child with CP. This case was a 6-year-old boy with spastic quadriplegic CP who had good cooperation and normal cognition. A single-subject A-B-A design was used. The case received 3 baseline, 4 intervention, and 2 follow-up measures. He received a 4-week (3 times a week) individualized VR training using VR-hand function training system and Eyetoy-play system with therapist\u27s manual guidance. The outcome measures included (1) four reaching kinematic parameters (movement time (MT), path, peak velocity (PV), and number of movement units (MU)) in 2 activities (pegboard and mail-delivery) at 3 directions (abduction, adduction, and forward); (2) touching a swing ball; and (3) the fine motor domain of Peabody Development Motor Scale-2nd edition (PDMS2). Visual inspection and 2-standard deviation band method were used to compare the outcome measures between the two adjacent phases. Improvements were found in the kinematic parameters in all directions from baseline to intervention, and the effects were maintained in some directions from intervention to follow-up. Improvement was also shown in the ability to touch a swing ball, but the effect was not maintained from intervention to follow-up. Furthermore, there was an increase (11 points) in the PDMS2 scores from baseline to intervention and an increase (1 point) from intervention to follow-up. This case study demonstrated the potential effect of VR training program to improve the upper-extremity function in children with CP. The training effects might retain for 1 month post intervention

    Porcine circovirus type 2 (PCV2) infection decreases the efficacy of an attenuated classical swine fever virus (CSFV) vaccine

    Get PDF
    The Lapinized Philippines Coronel (LPC) vaccine, an attenuated strain of classical swine fever virus (CSFV), is an important tool for the prevention and control of CSFV infection and is widely and routinely used in most CSF endemic areas, including Taiwan. The aim of this study was to investigate whether PCV2 infection affects the efficacy of the LPC vaccine. Eighteen 6-week-old, cesarean-derived and colostrum-deprived (CDCD), crossbred pigs were randomly assigned to four groups. A total of 105.3 TCID50 of PCV2 was experimentally inoculated into pigs through both intranasal and intramuscular routes at 0 days post-inoculation (dpi) followed by LPC vaccination 12 days later. All the animals were challenged with wild-type CSFV (ALD stain) at 27 dpi and euthanized at 45 dpi. Following CSFV challenge, the LPC-vaccinated pigs pre-inoculated with PCV2 showed transient fever, viremia, and viral shedding in the saliva and feces. The number of IgM+, CD4+CD8-CD25+, CD4+CD8+CD25+, and CD4-CD8+CD25+ lymphocyte subsets and the level of neutralizing antibodies against CSFV were significantly higher in the animals with LPC vaccination alone than in the pigs with PCV2 inoculation/LPC vaccination. In addition, PCV2-derived inhibition of the CSFV-specific cell proliferative response of peripheral blood mononuclear cells (PBMCs) was demonstrated in an ex vivo experiment. These findings indicate that PCV2 infection decreases the efficacy of the LPC vaccine. This PCV2-derived interference may not only allow the invasion of wild-type CSFV in pig farms but also increases the difficulty of CSF prevention and control in CSF endemic areas

    Dynamics of HBV cccDNA expression and transcription in different cell growth phase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The covalently closed-circular DNA (cccDNA) of hepatitis B virus (HBV) is associated with viral persistence in HBV-infected hepatocytes. However, the regulation of cccDNA and its transcription in the host cells at different growth stages is not well understood.</p> <p>Methods</p> <p>We took advantages of a stably HBV-producing cell line, 1.3ES2, and examine the dynamic changes of HBV cccDNA, viral transcripts, and viral replication intermediates in different cellular growth stages.</p> <p>Results</p> <p>In this study, we showed that cccDNA increased suddenly in the initial proliferation phase of cell growth, probably attributable to its nuclear replenishment by intracellular nucleocapsids. The amount of cccDNA then decreased dramatically in the cells during their exponential proliferation similar to the loss of extrachromosomal plasmid DNA during cell division, after which it accumulated gradually while the host cells grew to confluency. We found that cccDNA was reduced in dividing cells and could be removed when proliferating cells were subjected to long term of lamivudine (3TC) treatment. The amounts of viral replicative intermediates were rapidly reduced in these proliferating cells and were significantly increased after cells reaching confluency. The expression levels of viral transcripts were increased in parallel with the elevated expression of hepatic transcription factors (HNF4α, CEBPα, PPARα, etc.) during cell growth confluency. The HBV transcripts were transcribed from both integrated viral genome and cccDNA, however the transcriptional abilities of cccDNA was less efficient then that from integrated viral genome in all cell growth stages. We also noted increases in the accumulation of intracellular viral particles and the secretion of mature virions as the cells reached confluency and ceased to grow.</p> <p>Conclusions</p> <p>Based on the dynamics of HBV replication, we propose that HBV replication is modulated differently in the different stages of cell growth, and can be divided into three phases (initial proliferation phase, exponential proliferation phase and growth confluency phase) according to the cell growth curve. The regulation of cccDNA in different cell growth phase and its importance regarding HBV replication are discussed.</p

    Tumor-Associated Macrophage-Induced Invasion and Angiogenesis of Human Basal Cell Carcinoma Cells by Cyclooxygenase-2 Induction

    Get PDF
    Tumor-associated macrophages (TAMs) and cyclooxygenase-2 (COX-2) are associated with invasion, angiogenesis, and poor prognosis in many human cancers. However, the role of TAMs in human basal cell carcinoma (BCC) remains elusive. We found that the number of TAMs infiltrating the tumor is correlated with the depth of invasion, microvessel density, and COX-2 expression in human BCC cells. TAMs also aggregate near COX-2 expressing BCC tumor nests. We hypothesize that TAMs might activate COX-2 in BCC cells and subsequently increase their invasion and angiogenesis. TAMs are a kind of M2 macrophage derived from macrophages exposed to Th2 cytokines. M2-polarized macrophages derived from peripheral blood monocytes were cocultured with BCC cells without direct contact. Coculture with the M2 macrophages induced COX-2-dependent invasion and angiogenesis of BCC cells. Human THP-1 cell line cells, after treated with phorbol myristate acetate (PMA), differentiated to macrophages with M2 functional profiles. Coculture with PMA-treated THP-1 macrophages induced COX-2-dependent release of matrix metalloproteinase-9 and subsequent increased invasion of BCC cells. Macrophages also induced COX-2-dependent secretion of basic fibroblast growth factor and vascular endothelial growth factor-A, and increased angiogenesis in BCC cells

    A Combined DNA-Affinic Molecule and N-Mustard Alkylating Agent Has an Anti-Cancer Effect and Induces Autophagy in Oral Cancer Cells

    Get PDF
    Although surgery or the combination of chemotherapy and radiation are reported to improve the quality of life and reduce symptoms in patients with oral cancer, the prognosis of oral cancer remains generally poor. DNA alkylating agents, such as N-mustard, play an important role in cancer drug development. BO-1051 is a new 9-anilinoacridine N-mustard-derivative anti-cancer drug that can effectively target a variety of cancer cell lines and inhibit tumorigenesis in vivo. However, the underlying mechanism of BO-1051-mediated tumor suppression remains undetermined. In the present study, BO-1051 suppressed cell viability with a low IC50 in oral cancer cells, but not in normal gingival fibroblasts. Cell cycle analysis revealed that the tumor suppression by BO-1051 was accompanied by cell cycle arrest and downregulation of stemness genes. The enhanced conversion of LC3-I to LC3-II and the formation of acidic vesicular organelles indicated that BO-1501 induced autophagy. The expression of checkpoint kinases was upregulated as demonstrated with Western blot analysis, showing that BO-1051 could induce DNA damage and participate in DNA repair mechanisms. Furthermore, BO-1051 treatment alone exhibited a moderate tumor suppressive effect against xenograft tumor growth in immunocompromised mice. Importantly, the combination of BO-1051 and radiation led to a potent inhibition on xenograft tumorigenesis. Collectively, our findings demonstrated that BO-1051 exhibited a cytotoxic effect via cell cycle arrest and the induction of autophagy. Thus, the combination of BO-1051 and radiotherapy may be a feasible therapeutic strategy against oral cancer in the future

    Rapid Trio Exome Sequencing for Autosomal Recessive Renal Tubular Dysgenesis in Recurrent Oligohydramnios

    Get PDF
    Oligohydramnios is not a rare prenatal finding. However, recurrent oligohydramnios is uncommon, and genetic etiology should be taken into consideration. We present two families with recurrent fetal oligohydramnios that did not respond to amnioinfusion. Rapid trio-whole-exome sequencing (WES) revealed mutations in the AGT gene in both families within 1 week. The first family had a compound heterozygous mutation with c.856 + 1G &gt; T and c.857-619_1269 + 243delinsTTGCCTTGC changes. The second family had homozygous c.857-619_1269 + 243delinsTTGCCTTGC mutations. AGT gene mutation may lead to autosomal recessive renal tubular dysgenesis, a rare and lethal disorder that can result in early neonatal death. Both the alleles identified are known alleles associated with pathogenicity. Our findings suggest that trio-WES analysis may help rapidly identify causative etiologies that can inform prompt counseling and decision-making prenatally

    A Randomised Placebo-Controlled Trial of a Traditional Chinese Herbal Formula in the Treatment of Primary Dysmenorrhoea

    Get PDF
    BACKGROUND: Most traditional Chinese herbal formulas consist of at least four herbs. Four-Agents-Decoction (Si Wu Tang) is a documented eight hundred year old formula containing four herbs and has been widely used to relieve menstrual discomfort in Taiwan. However, no specific effect had been systematically evaluated. We applied Western methodology to assess its effectiveness and safety for primary dysmenorrhoea and to evaluate the compliance and feasibility for a future trial. METHODOLOGY/PRINCIPAL FINDINGS: A randomised, double-blind, placebo-controlled, pilot clinical trial was conducted in an ad hoc clinic setting at a teaching hospital in Taipei, Taiwan. Seventy-eight primary dysmenorrheic young women were enrolled after 326 women with self-reported menstrual discomfort in the Taipei metropolitan area of Taiwan were screened by a questionnaire and subsequently diagnosed by two gynaecologists concurrently with pelvic ultrasonography. A dosage of 15 odorless capsules daily for five days starting from the onset of bleeding or pain was administered. Participants were followed with two to four cycles for an initial washout interval, one to two baseline cycles, three to four treatment cycles, and three follow-up cycles. Study outcome was pain intensity measured by using unmarked horizontal visual analog pain scale in an online daily diary submitted directly by the participants for 5 days starting from the onset of bleeding or pain of each menstrual cycle. Overall-pain was the average pain intensity among days in pain and peak-pain was the maximal single-day pain intensity. At the end of treatment, both the overall-pain and peak-pain decreased in the Four-Agents-Decoction (Si Wu Tang) group and increased in the placebo group; however, the differences between the two groups were not statistically significant. The trends persisted to follow-up phase. Statistically significant differences in both peak-pain and overall-pain appeared in the first follow-up cycle, at which the reduced peak-pain in the Four-Agents-Decoction (Si Wu Tang) group did not differ significantly by treatment length. However, the reduced peak-pain did differ profoundly among women treated for four menstrual cycles (2.69 (2.06) cm, mean (standard deviation), for the 20 women with Four-Agents-Decoction and 4.68 (3.16) for the 22 women with placebo, p = .020.) There was no difference in adverse symptoms between the Four-Agents-Decoction (Si Wu Tang) and placebo groups. CONCLUSION/SIGNIFICANCE: Four-Agents-Decoction (Si Wu Tang) therapy in this pilot post-market clinical trial, while meeting the standards of conventional medicine, showed no statistically significant difference in reducing menstrual pain intensity of primary dysmenorrhoea at the end of treatment. Its use, with our dosage regimen and treatment length, was not associated with adverse reactions. The finding of statistically significant pain-reducing effect in the first follow-up cycle was unexpected and warrants further study. A larger similar trial among primary dysmenorrheic young women with longer treatment phase and multiple batched study products can determine the definitive efficacy of this historically documented formula. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN23374750

    G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tazarotene-induced gene 1 (TIG1) is a retinoid-inducible type II tumour suppressor gene. The B isoform of TIG1 (TIG1B) inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform are yet to be reported. Therefore, this study investigated the effects of the TIG1A and TIG1B isoforms on cell growth and gene expression profiles using colon cancer cells.</p> <p>Methods</p> <p>TIG1A and TIG1B stable clones derived from HCT116 and SW620 colon cancer cells were established using the GeneSwitch system; TIG1 isoform expression was induced by mifepristone treatment. Cell growth was assessed using the WST-1 cell proliferation and colony formation assays. RNA interference was used to examine the TIG1 mediating changes in cell growth. Gene expression profiles were determined using microarray and validated using real-time polymerase chain reaction, and Western blot analyses.</p> <p>Results</p> <p>Both TIG1 isoforms were expressed at high levels in normal prostate and colon tissues and were downregulated in colon cancer cell lines. Both TIG1 isoforms significantly inhibited the growth of transiently transfected HCT116 cells and stably expressing TIG1A and TIG1B HCT116 and SW620 cells. Expression of 129 and 55 genes was altered upon induction of TIG1A and TIG1B expression, respectively, in stably expressing HCT116 cells. Of the genes analysed, 23 and 6 genes were upregulated and downregulated, respectively, in both TIG1A and TIG1B expressing cells. Upregulation of the G-protein-coupled receptor kinase 5 (GRK5) was confirmed using real-time polymerase chain reaction and Western blot analyses in both TIG1 stable cell lines. Silencing of TIG1A or GRK5 expression significantly decreased TIG1A-mediated cell growth suppression.</p> <p>Conclusions</p> <p>Expression of both TIG1 isoforms was observed in normal prostate and colon tissues and was downregulated in colon cancer cell lines. Both TIG1 isoforms suppressed cell growth and stimulated GRK5 expression in HCT116 and SW620 cells. Knockdown of GRK5 expression alleviated TIG1A-induced growth suppression of HCT116 cells, suggesting that GRK5 mediates cell growth suppression by TIG1A. Thus, TIG1 may participate in the downregulation of G-protein coupled signaling by upregulating GRK5 expression.</p

    Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Neocallimastix patriciarum</it> is one of the common anaerobic fungi in the digestive tracts of ruminants that can actively digest cellulosic materials, and its cellulases have great potential for hydrolyzing cellulosic feedstocks. Due to the difficulty in culture and lack of a genome database, it is not easy to gain a global understanding of the glycosyl hydrolases (<it>GHs</it>) produced by this anaerobic fungus.</p> <p>Results</p> <p>We have developed an efficient platform that uses a combination of transcriptomic and proteomic approaches to <it>N. patriciarum </it>to accelerate gene identification, enzyme classification and application in rice straw degradation. By conducting complementary studies of transcriptome (Roche 454 GS and Illumina GA IIx) and secretome (ESI-Trap LC-MS/MS), we identified 219 putative <it>GH </it>contigs and classified them into 25 <it>GH</it> families. The secretome analysis identified four major enzymes involved in rice straw degradation: β-glucosidase, endo-1,4-β-xylanase, xylanase B and Cel48A exoglucanase. From the sequences of assembled contigs, we cloned 19 putative cellulase genes, including the <it>GH1</it>, <it>GH3</it>, <it>GH5</it>, <it>GH6</it>, <it>GH9</it>, <it>GH18</it>, <it>GH43 </it>and <it>GH48 </it>gene families, which were highly expressed in <it>N. patriciarum </it>cultures grown on different feedstocks.</p> <p>Conclusions</p> <p>These <it>GH </it>genes were expressed in Pichia pastoris and/or Saccharomyces cerevisiae for functional characterization. At least five novel cellulases displayed cellulytic activity for glucose production. One β-glucosidase (W5-16143) and one exocellulase (W5-CAT26) showed strong activities and could potentially be developed into commercial enzymes.</p
    corecore