4,983 research outputs found

    Fiber Optic Tactical Local Network (FOTLAN)

    Get PDF
    A 100 Mbit/s FDDI (fiber distributed data interface) network interface unit is described that supports real-time data, voice and video. Its high-speed interrupt-driven hardware architecture efficiently manages stream and packet data transfer to the FDDI network. Other enhancements include modular single-mode laser-diode fiber optic links to maximize node spacing, optic bypass switches for increased fault tolerance, and a hardware performance monitor to gather real-time network diagnostics

    Metal-insulator transition from combined disorder and interaction effects in Hubbard-like electronic lattice models with random hopping

    Full text link
    We uncover a disorder-driven instability in the diffusive Fermi liquid phase of a class of many-fermion systems, indicative of a metal-insulator transition of first order type, which arises solely from the competition between quenched disorder and interparticle interactions. Our result is expected to be relevant for sufficiently strong disorder in d = 3 spatial dimensions. Specifically, we study a class of half-filled, Hubbard-like models for spinless fermions with (complex) random hopping and short-ranged interactions on bipartite lattices, in d > 1. In a given realization, the hopping disorder breaks time reversal invariance, but preserves the special ``nesting'' symmetry responsible for the charge density wave instability of the ballistic Fermi liquid. This disorder may arise, e.g., from the application of a random magnetic field to the otherwise clean model. We derive a low energy effective field theory description for this class of disordered, interacting fermion systems, which takes the form of a Finkel'stein non-linear sigma model [A. M. Finkel'stein, Zh. Eksp. Teor. Fiz. 84, 168 (1983), Sov. Phys. JETP 57, 97 (1983)]. We analyze the Finkel'stein sigma model using a perturbative, one-loop renormalization group analysis controlled via an epsilon-expansion in d = 2 + epsilon dimensions. We find that, in d = 2 dimensions, the interactions destabilize the conducting phase known to exist in the disordered, non-interacting system. The metal-insulator transition that we identify in d > 2 dimensions occurs for disorder strengths of order epsilon, and is therefore perturbatively accessible for epsilon << 1. We emphasize that the disordered system has no localized phase in the absence of interactions, so that a localized phase, and the transition into it, can only appear due to the presence of the interactions.Comment: 47 pages, 25 figures; submitted to Phys. Rev. B. Long version of arXiv:cond-mat/060757

    Mott-Kondo Insulator Behavior in the Iron Oxychalcogenides

    Full text link
    We perform a combined experimental-theoretical study of the Fe-oxychalcogenides (FeO\emph{Ch}) series La2_{2}O2_{2}Fe2_{2}O\emph{M}2_{2} (\emph{M}=S, Se), which is the latest among the Fe-based materials with the potential \ to show unconventional high-Tc_{c} superconductivity (HTSC). A combination of incoherent Hubbard features in X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) spectra, as well as resitivity data, reveal that the parent FeO\emph{Ch} are correlation-driven insulators. To uncover microscopics underlying these findings, we perform local density approximation-plus-dynamical mean field theory (LDA+DMFT) calculations that unravel a Mott-Kondo insulating state. Based upon good agreement between theory and a range of data, we propose that FeO\emph{Ch} may constitute a new, ideal testing ground to explore HTSC arising from a strange metal proximate to a novel selective-Mott quantum criticality

    Selective interlayer ferromagnetic coupling between the Cu spins in YBa2_2 Cu3_3 O7−x_{7-x} grown on top of La0.7_{0.7} Ca0.3_{0.3} MnO3_3

    Full text link
    Studies to date on ferromagnet/d-wave superconductor heterostructures focus mainly on the effects at or near the interfaces while the response of bulk properties to heterostructuring is overlooked. Here we use resonant soft x-ray scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between the in-plane Cu spins in YBa2_2 Cu3_3 O7−x_{7-x} (YBCO) superconductor when it is grown on top of ferromagnetic La0.7_{0.7} Ca0.3_{0.3} MnO3_3 (LCMO) manganite layer. This coupling, present in both normal and superconducting states of YBCO, is sensitive to the interfacial termination such that it is only observed in bilayers with MnO_2but not with La0.7_{0.7} Ca0.3_{0.3} interfacial termination. Such contrasting behaviors, we propose, are due to distinct energetic of CuO chain and CuO2_2 plane at the La0.7_{0.7} Ca0.3_{0.3} and MnO2_2 terminated interfaces respectively, therefore influencing the transfer of spin-polarized electrons from manganite to cuprate differently. Our findings suggest that the superconducting/ferromagnetic bilayers with proper interfacial engineering can be good candidates for searching the theorized Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different from the published versio

    Disorder-induced Majorana metal in interacting non-Abelian anyon systems

    Full text link
    We demonstrate that a thermal metal of Majorana fermions forms in a two-dimensional system of interacting non-Abelian (Ising) anyons in the presence of moderate disorder. This bulk metallic phase arises in the ν=5/2\nu=5/2 quantum Hall state when disorder pins the anyonic quasiparticles. More generally, it naturally occurs for various proposed systems supporting Majorana fermion zero modes when disorder induces the random pinning of a finite density of vortices. This includes all two-dimensional topological superconductors in so-called symmetry class D. A distinct experimental signature of the thermal metal phase is the presence of bulk heat transport down to zero temperature.Comment: 4 pages, 6 figure

    Topological Surface States and Dirac point tuning in ternary Bi2Te2Se class of topological insulators

    Full text link
    Using angle-resolved photoemission spectroscopy, we report electronic structure for representative members of ternary topological insulators. We show that several members of this family, such as Bi2Se2Te, Bi2Te2Se, and GeBi2Te4, exhibit a singly degenerate Dirac-like surface state, while Bi2Se2S is a fully gapped insulator with no measurable surface state. One of these compounds, Bi2Se2Te, shows tunable surface state dispersion upon its electronic alloying with Sb (SbxBi2-xSe2Te series). Other members of the ternary family such as GeBi2Te4 and BiTe1.5S1.5 show an in-gap surface Dirac point, the former of which has been predicted to show nonzero weak topological invariants such as (1;111); thus belonging to a different topological class than BiTe1.5S1.5. The measured band structure presented here will be a valuable guide for interpreting transport, thermoelectric, and thermopower measurements on these compounds. The unique surface band topology observed in these compounds contributes towards identifying designer materials with desired flexibility needed for thermoelectric and spintronic device fabrication.Comment: 9 pages, 6 figures; Related results at http://online.kitp.ucsb.edu/online/topomat11/hasan

    Surface electronic structure of a topological Kondo insulator candidate SmB6: insights from high-resolution ARPES

    Full text link
    The Kondo insulator SmB6 has long been known to exhibit low temperature (T < 10K) transport anomaly and has recently attracted attention as a new topological insulator candidate. By combining low-temperature and high energy-momentum resolution of the laser-based ARPES technique, for the first time, we probe the surface electronic structure of the anomalous conductivity regime. We observe that the bulk bands exhibit a Kondo gap of 14 meV and identify in-gap low-lying states within a 4 meV window of the Fermi level on the (001)-surface of this material. The low-lying states are found to form electron-like Fermi surface pockets that enclose the X and the Gamma points of the surface Brillouin zone. These states disappear as temperature is raised above 15K in correspondence with the complete disappearance of the 2D conductivity channels in SmB6. While the topological nature of the in-gap metallic states cannot be ascertained without spin (spin-texture) measurements our bulk and surface measurements carried out in the transport-anomaly-temperature regime (T < 10K) are consistent with the first-principle predicted Fermi surface behavior of a topological Kondo insulator phase in this material.Comment: 4 Figures, 6 Page
    • …
    corecore