205 research outputs found
Management of broodstock and quality control of fish seed in Hungary
Common carp (Cyprinus carpio) breeding has a long tradition in Hungary. However, recent economic changes in Eastern Europe and new developments in aquaculture necessitated the need for ensuring quality of the brood stock used in hatcheries and the legal and institutional frameworks needed to implement the program. In addition to good research and development programs and gene banking, it became essential to establish an appropriate legal framework, organize, coordinate and control breeding activities, and provide financial support. It was a major breakthrough for carp breeding when C.carpio was recognized as one of the cultivated animals in the Animal Breeding Act in 1993. The Carp Breeding Section of the Hungarian Fish Producers Association plays an important role in carp breeding programs. Thirteen breeding farms of the Carp Breeding Section have 24 certified C.carpio varieties. In Hungary, about 80 % of the seed used as stocking for commercial production are from high quality certified breeders
Persistent correlation of constrained colloidal motion
We have investigated the motion of a single optically trapped colloidal
particle close to a limiting wall at time scales where the inertia of the
surrounding fluid plays a significant role. The velocity autocorrelation
function exhibits a complex interplay due to the momentum relaxation of the
particle, the vortex diffusion in the fluid, the obstruction of flow close to
the interface, and the harmonic restoring forces due to the optical trap. We
show that already a weak trapping force has a significant impact on the
velocity autocorrelation function C(t)= at times where the
hydrodynamic memory leads to an algebraic decay. The long-time behavior for the
motion parallel and perpendicular to the wall is derived analytically and
compared to numerical results. Then, we discuss the power spectral densities of
the displacement and provide simple interpolation formulas. The theoretical
predictions are finally compared to recent experimental observations.Comment: 12 pages, 6 figure
Lessons from the breeding program on common carp in Hungary
Common carp is one of the most important cultured freshwater fish species in the world. Its production in freshwater areas is the second largest in Europe after rainbow trout. Common carp production in Europe was 146,845 t in 2004 (FAO Fishstat Plus 2006). Common carp production is concentrated mainly in Central and Eastern Europe. In Hungary, common carp has been traditionally cultured in earthen ponds since the late 19th century, following the sharp drop in catches from natural waters, due to the regulation of main river systems. Different production technologies and unintentional selection methods resulted in a wide variety of this species. Just before the intensification of rearing technology and the exchange of stocking materials among fish farms (early sixties), Îlandracesö of carp were collected from practically all Hungarian fish farms into a live gene bank at the Research Institute for Fisheries, Aquaculture and Irrigation (HAKI) at Szarvas (Bakos and Gorda 1995; Bakos and Gorda 2001). In order to provide highly productive hybrids for production purposes starting from 1964, different strains and crosses between Hungarian landraces were created and tested. During the last 40 years, approximately 150 two-, three-, and four-line hybrids were produced. While developing parental lines, methods of individual selection, inbreeding, backcrossing of lines, gynogenesis and sex reversal were used. This breeding program resulted in three outstanding hybrids: ÎSzarvas 215 mirrorö and ÎSzarvas P31 scalyö for pond production, and ÎSzarvas P34 scalyö for angling waters. Besides satisfying the needs of industry, the live gene bank helped to conserve the biological diversity of Hungarian carp landraces. Fifteen Hungarian carp landraces are still maintained today in the gene bank. Through exchange programs fifteen foreign carp strains were added to the collection from Central and Eastern Europe, as well as Southeast Asia (Bakos and Gorda 2001). Besides developing the methodology to maintain live specimens in the gene bank, the National Carp Breeding Program has been initiated in cooperation with all the key stakeholders in Hungary, namely the National Association of Fish Producers (HOSZ), the National Institute for Agricultural Quality Control (OMMI), and the Research Institute for Fisheries, Aquaculture and Irrigation (HAKI). In addition, methodologies or technologies for broodstock management and carp performance testing have been developed. This National Carp Breeding Program is being implemented successfully since the mid-1990s.Biotechnology, Genetics, Food fish, Genetic drift, Genetic diversity, Aquatic animals, DNA, Selective breeding, Breeding success, Research programmes Cyprinus carpio
In situ viscometry by optical trapping interferometry
International audienc
Optical trapping microrheology in cultured human cells
We present the microrheological study of the two close human epithelial cell lines: non-cancerous HCV29 and cancerous T24. The optical tweezers tracking was applied to extract the several seconds long trajectories of endogenous lipid granules at time step of 1ÎŒs. They were analyzed using a recently proposed equation for mean square displacement (MSD) in the case of subdiffusion influenced by an optical trap. This equation leads to an explicit form for viscoelastic moduli. The moduli of the two cell lines were found to be the same within the experimental accuracy for frequencies 102 - 105 Hz. For both cell lines subdiffusion was observed with the exponent close to 3/4, the value predicted by the theory of semiflexible polymers. For times longer than 0.1s the MSD of cancerous cells exceeds the MSD of non-cancerous cells for all values of the trapping force. Such behavior can be interpreted as a signature of the active processes and prevents the extraction of the low-frequency viscoelastic moduli for the living cells by passive microrheolog
Disappearing scales in carps: Re-visiting Kirpichnikov's model on the genetics of scale pattern formation
The body of most fishes is fully covered by scales that typically form tight, partially overlapping rows. While some of the genes controlling the formation and growth of fish scales have been studied, very little is known about the genetic mechanisms regulating scale pattern formation. Although the existence of two genes with two pairs of alleles (S&s and N&n) regulating scale coverage in cyprinids has been predicted by Kirpichnikov and colleagues nearly eighty years ago, their identity was unknown until recently. In 2009, the âSâ gene was found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1, while the second gene called âNâ has not yet been identified. We re-visited the original model of Kirpichnikov that proposed four major scale pattern types and observed a high degree of variation within the so-called scattered phenotype due to which this group was divided into two sub-types: classical mirror and irregular. We also analyzed the survival rates of offspring groups and found a distinct difference between Asian and European crosses. Whereas nude Ă nude crosses involving at least one parent of Asian origin or hybrid with Asian parent(s) showed the 25% early lethality predicted by Kirpichnikov (due to the lethality of the NN genotype), those with two Hungarian nude parents did not. We further extended Kirpichnikov's work by correlating changes in phenotype (scale-pattern) to the deformations of fins and losses of pharyngeal teeth. We observed phenotypic changes which were not restricted to nudes, as described by Kirpichnikov, but were also present in mirrors (and presumably in linears as well; not analyzed in detail here). We propose that the gradation of phenotypes observed within the scattered group is caused by a gradually decreasing level of signaling (a dose-dependent effect) probably due to a concerted action of multiple pathways involved in scale formation
Exploring the Mechanical Properties of Single Vimentin Intermediate Filaments by Atomic Force Microscopy
Intermediate filaments (IFs), together with actin filaments and microtubules, compose the cytoskeleton. Among other functions, Ts impart mechanical stability to cells when exposed to mechanical stress and act as a support when the other cytoskeletal filaments cannot keep the structural integrity of the cells. Here we present a study on the bending properties of single vimentin Ts in which we used an atomic force microscopy (AFM) tip to elastically deform single filaments hanging over a porous membrane. We obtained a value for the bending modulus of non-stabilized IFs between 300 MPa. and 400 MPa. Our results together with previous ones suggest that lFs present axial sliding between their constitutive building blocks and therefore have a bending modulus that depends on the filament length. Measurements of glutaraldehyde-stabilized filaments were also performed to reduce the axial sliding between subunits and therefore provide a lower limit estimate of the Young's modulus of the filaments. The results show an increment of two to three times in the bending modulus for the stabilized Ts with respect to the non-stabilized ones, suggesting that the Young's modulus of vimentin IFs should be around 900 MPa or higher
- âŠ