497 research outputs found

    Modeling and Control of Robot-Structure Coupling During In-Space Structure Assembly

    Get PDF
    This paper considers the problem of robot-structure coupling dynamics during in-space robotic assembly of large flexible structures. A two-legged walking robot is used as a construction agent, whose primary goal is to stably walking on the flexible structure while carrying a substructure component to a designated location. The reaction forces inserted by the structure to the walking robot are treated as bounded disturbance inputs, and a trajectory tracking robotic controller is proposed that combines the standard full state feedback motion controller and an adaptive controller to account for the disturbance inputs. In this study, a reduced-order Euler-Bernoulli beam structure model is adapted, and a finite number of co-located sensors and actuators are distributed along the span of the beam structure. The robot-structure coupling forces are treated as a bounded external forcing function to the structure, and hence an output covariance constraint problem can be formulated, in terms of linear matrix inequality, for optimal structure control by utilizing the direct output feedback controllers. The numerical simulations show the effectiveness of the proposed robot-structure modeling and control methodology

    Surface and thin film analysis: principles, instrumentation, applications

    Get PDF

    A Mobile Robot for Locomotion Through a 3D Periodic Lattice Environment

    Get PDF
    This paper describes a novel class of robots specifically adapted to climb periodic lattices, which we call 'Relative Robots'. These robots use the regularity of the structure to simplify the path planning, align with minimal feedback, and reduce the number of degrees of freedom (DOF) required to locomote. They can perform vital inspection and repair tasks within the structure that larger truss construction robots could not perform without modifying the structure. We detail a specific type of relative robot designed to traverse a cuboctahedral (CubOct) cellular solids lattice, show how the symmetries of the lattice simplify the design, and test these design methodologies with a CubOct relative robot that traverses a 76.2 mm (3 in.) pitch lattice, MOJO (Multi-Objective JOurneying robot). We perform three locomotion tasks with MOJO: vertical climbing, horizontal climbing, and turning, and find that, due to changes in the orientation of the robot relative to the gravity vector, the success rate of vertical and horizontal climbing is significantly different

    Bipedal Isotropic Lattice Locomoting Explorer: Robotic Platform for Locomotion and Manipulation of Discrete Lattice Structures and Lightweight Space Structures

    Get PDF
    A robotic platform for traversing and manipulating a modular 3D lattice structure is described. The robot is designed specifically for its tasks within a structured environment, and is simplified in terms of its numbers of degrees of freedom (DOF). This allows for simpler controls and a reduction of mass and cost. Designing the robot relative to the environment in which it operates results in a specific type of robot called a "relative robot". Depending on the task and environment, there can be a number of relative robots. This invention describes a bipedal robot which can locomote across a periodic lattice structure made of building block parts. The robot is able to handle, manipulate, and transport these blocks when there is more than one robot. Based on a general inchworm design, the robot has added functionality while retaining minimal complexity, and can perform numerous maneuvers for increased speed, reach, and placement

    SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    Get PDF
    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems

    Envejecimiento, brecha digital y calidad de vida de las personas mayores en cuba

    Get PDF
    The digital divide refers to the lack of access to technology and the skills needed to use it, which can exacerbate social and economic inequality.La brecha digital se refiere a la falta de acceso a la tecnología y las habilidades necesarias para utilizarla, lo que puede exacerbar la desigualdad social y económica

    Digital Material Assembly by Passive Means and Modular Isotropic Lattice Extruder System

    Get PDF
    A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure

    Meso-Scale Digital Materials: Modular, Reconfigurable, Lattice-Based Structures

    Get PDF
    We present a modular, reconfigurable system for building large structures. This system uses discrete lattice elements, called digital materials, to reversibly assemble ultralight structures that are 99.7% air and yet maintain sufficient specific stiffness for a variety of structural applications and loading scenarios. Design, manufacturing, and characterization of modular building blocks are described, including struts, nodes, joints, and build strategies. Simple case studies are shown using the same building blocks in three different scenarios: a bridge, a boat, and a shelter. Field implementation and demonstration is supplemented by experimental data and numerical simulation. A simplified approach for analyzing these structures is presented which shows good agreement with experimental results

    Design of Multifunctional Hierarchical Space Structures

    Get PDF
    We describe a system for the design of space structures with tunable structural properties based on the discrete assembly of modular lattice elements. These lattice elements can be constructed into larger beam-like elements, which can then be assembled into large scale truss structures. These discrete lattice elements are reversibly assembled with mechanical fasteners, which allows them to be arbitrarily reconfigured into various application-specific designs. In order to assess the validity of this approach, we design two space structures with similar geometry but widely different structural requirements: an aerobrake, driven by strength requirements, and a precision segmented reflector, driven by stiffness and accuracy requirements. We will show agreement between simplified numerical models based on hierarchical assembly and analytical solutions. We will also present an assessment of the error budget resulting from the assembly of discrete structures. Lastly, we will address launch vehicle packing efficiency issues for transporting these structures to lower earth orbit
    corecore