71 research outputs found

    Genotoxikus hatásra bekövetkező funkcionális és strukturális DNS változások = Functional and structural changes in DNA upon genotoxic effects

    Get PDF
    Morfológiai és biokémiai vizsgálataink arra utalnak, hogy a a genotoxikus hatások kategorizálhatók az okozott kromatin változások alapján. A kemotoxikus változások potenciális diagnosztikus jelentősége miatt vizsgáltuk a nehézfémek (elsősosrban kadmium) (Banfalvi et al., 2005), a gamma sugárzás (Nagy et al., 2004), az UVB sugárzás (Ujvárosi et al., 2007) és a carcinogén (dimetilnitrózamin) hatására bekövetkező kromatin változásokat (Trencsényi et al., 2007). Kadmium kezelés jellegzetes szakadásokat és nagy lyukakat hozott létre a sejtmagban. A gamma sugárzás preapoptotikus hatására: a. a sejtek és sejtmagok mérete megnőtt, b. DNA tartalmuk a sejtciklus minden szakaszában kisebb volt a normál kezeletlen populációhoz képest, c. a sejtciklus a korai S fázisban leállt (2,4 C értéknél), d. a kromatin kondenzálás annak fibrilláris szakaszában akadt el, e. az apoptotikus testek száma és nagysága a sejtciklus haladásávalfordítva arányos: sok apró apoptotikus testtel az S fázis elején és kevés nagy apoptotikus testtel az S fázis végén. A CHO sejtekben mért vizsgálatokat humán K562 sejteken megerősítettük. UVB sugárzás hatására a kromoszómák nem voltak láthatók, a sérülés hatására vékony összefüggő kromatin fátyol vonta be mind az interfázisos, mind a metafázisos kromoszómákat. | Morphological and biochemical studies after genotoxic treatments suggest that the consequences of various chromatin injuries can be categorized based on the assessment of injury-specific chromatin changes. Due to its diagnostic significance, we have started to determine and systematize the effects of heavy metals, primarily cadmium treatment (Banfalvi et al., 2005), gamma irradiation (Nagy et al., 2004) and UV irradiation (Ujvarosi et al., 2007). After cadmium treatment and have seen the same large extensive disruptions and holes in the nuclear membrane and sticky incompletely folded chromosomes typical for cadmium treatment (Nagy et al., 2004; Banfalvi et al., 2007). Preapoptotic changes upon γ-irradiation manifested as: (a) The cellular and nuclear sizes increased. (b) The DNA content was lower in each elutriated subpopulation of cells. (c) The progression of the cell cycle was arrested in the early S phase at 2.4 C value. (d) The chromatin condensation was blocked at its fibrillary stage. (e) The number and size of apoptotic bodies were inversely correlated with the progression of the cell cycle, with many small apoptotic bodies in early S phase and less but larger apoptotic bodies in late S phase (Nagy et al., 2004). Similar observations were made in K562 cells (Banfalvi et al., 2007). UV irradiation blocked chromatin condensation at its fibrillary stage, nuclear structures were blurred and covered with fibrillary chromatin, neither interphase nor metaphase chromosomes were visible

    Wall shear stress in the development of in-stent restenosis revisited. A critical review of clinical data on shear stress after intracoronary stent implantation

    Get PDF
    The average wall shear stress (WSS) is in 1 Pa range in coronary arteries, while the stretching effect of an implanted coronary stent can generate up to 3 × 105 times higher circumferential stress in the vessel wall. It is widely accepted that WSS plays a critical role in the development of restenosis after coronary stent implantation, but relevant clinical endpoint studies are lack­ing. Fluid dynamics modeling suggests an association between WSS and intimal hyperplasia, however, such an association is not established when the compensating healing process becomes an overshoot phenomenon. This review summarizes available clinical results and concepts of potential clinical importance

    A new room-temperature equation of state of Bi up to 260 GPa

    Full text link
    At room temperature, bismuth undergoes several structural transitions with increasing pressure before taking on a body-centered cubic (bcc) phase at approximately 8 GPa. The bcc structure is stable to the highest measured pressure and its simplicity, along with its high compressibility and atomic number, make it an enticing choice as a pressure calibrant. We present three data sets on the compression of bismuth in a diamond anvil cell in a neon pressure medium, up to a maximum pressure of about 260 GPa. The use of a soft pressure medium reduces deviatoric stress when compared to previous work. With an expanded pressure range, higher point density, and a decreased uniaxial stress component, we are able to provide more reliable equation of state (EOS) parameters. We also conduct density functional theory (DFT) electronic-structure calculations that confirm the stability of the bcc phase at high pressure.Comment: 7 pages, 5 figures in main text; 7 pages, 2 figures in supplemen

    Characterization of Defect Structure in Electrodeposited Nanocrystalline Ni Films

    Full text link
    The microstructure of electrodeposited Ni films produced without and with organic additives (saccharin and formic acid) was investigated by X-ray diffraction (XRD) line profile analysis and cross-sectional transmission electron microscopy (TEM). Whereas the general effect of these additives on the microstructure (elimination of columnar growth as well as grain refinement) was reproduced, the pronounced intention of this study was to compare the results of various seldom-used high-performance structural characterization methods on identical electrodeposited specimens in order to reveal fine details of structural changes qualitatively not very common in this field. In the film deposited without additives, a columnar structure was observed showing similarities to the T-zone of structure zone models. Both formic acid and saccharin additives resulted in equiaxed grains with reduced size, as well as increased dislocation and twin fault densities in the nanocrystalline films. Moreover, the structure became homogeneous and free of texture within the total film thickness due to the additives. Saccharin yielded smaller grain size and larger defect density than formic acid. A detailed analysis of the grain size and twin boundary spacing distributions was carried out with the complementary application of TEM and XRD, by carefully distinguishing between the TEM and XRD grain sizes.Comment: 26 pages, 11 figure
    corecore