5 research outputs found

    Gamma-rhythmic input causes spike output

    No full text
    The gamma rhythm has been implicated in neuronal communication, but causal evidence remains indirect. We measured spike output of local neuronal networks and emulated their synaptic input through optogenetics. Opsins provide currents through somato-dendritic membranes, similar to synapses, yet under experimental control with high temporal precision. We expressed Channelrhodopsin-2 in excitatory neurons of cat visual cortex and recorded neuronal responses to light with different temporal characteristics. Sine waves of different frequencies entrained neuronal responses with a reliability that peaked for input frequencies in the gamma band. Crucially, we also presented white-noise sequences, because their temporal unpredictability enables analysis of causality. Neuronal spike output was caused specifically by the input’s gamma component. This gamma-specific transfer function is likely an emergent property of in-vivo networks with feedback inhibition. The method described here could reveal the transfer function between the input to any one and the output of any other neuronal group

    Cortical resonance selects coherent input

    No full text
    Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We used optogenetics to generate depolarizing currents in pyramidal neurons of cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output. Cortex transformed constant excitation into strong gamma-band synchronization, revealing the well-known cortical resonance. Increasing excitation with ramps increased the strength and frequency of synchronization. Slow, symmetric excitation profiles revealed hysteresis of power and frequency. Crucially, white-noise input sequences enabled causal analysis of network transmission, establishing that cortical resonance selectively transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory units uncovered a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-frequency adaptation. The presented approach provides a powerful means to investigate the resonance properties of local circuits and probe how these properties transform input and shape transmission

    Magnetoresistive Sensor in Two-Dimension on a 25 μm Thick Silicon Substrate for In Vivo Neuronal Measurements

    No full text
    International audienceNeuronal electrical activity is widely studied in vivo, and the ability to measure its magnetic equivalent to obtain an undisturbed signal with both amplitude and direction information leading to neuronal signal mapping would be a promising tool for neuroscience. To provide such a tool, a probe with spin-electronics-based magnetic sensors with orthogonal axes of sensitivity for two directions of measurement is realized, thanks to a local magnetization re-orientation technique induced by Joule heating. This probe is tested under in vivo measurement conditions in the brain of an anesthetized rat. To be as close as possible to neurons and to create minimal damage during the probe’s insertion, the tip thickness has been drastically decreased using a silicon-on-insulator substrate. Our probes provide the ability to perform in vivo magnetic measurements on two orthogonal axes on a 25 μm thick silicon tip with a sensitivity of 1.7%/mT along one axis and 0.9%/mT along the perpendicular axis in the sensor plane, for a limit of detection at 1 kHz of 1.0 and 1.3 nT, respectively. These probes have been tested through a phantom study and during an in vivo experiment. The robustness and stability over one year are demonstrated
    corecore