7,135 research outputs found
The angular momentum of a magnetically trapped atomic condensate
For an atomic condensate in an axially symmetric magnetic trap, the sum of
the axial components of the orbital angular momentum and the hyperfine spin is
conserved. Inside an Ioffe-Pritchard trap (IPT) whose magnetic field (B-field)
is not axially symmetric, the difference of the two becomes surprisingly
conserved. In this paper we investigate the relationship between the values of
the sum/difference angular momentums for an atomic condensate inside a magnetic
trap and the associated gauge potential induced by the adiabatic approximation.
Our result provides significant new insight into the vorticity of magnetically
trapped atomic quantum gases.Comment: 4 pages, 1 figure
Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation
BACKGROUND:
Overlapping transcripts in antisense orientation have the potential to form double-stranded RNA (dsRNA), a substrate for a number of different RNA-modification pathways. One prominent route for dsRNA is its breakdown by Dicer enzyme complexes into small RNAs, a pathway that is widely exploited by RNA interference technology to inactivate defined genes in transgenic lines. The significance of this pathway for endogenous gene regulation remains unclear.
RESULTS:
We have examined transcription data for overlapping gene pairs in Arabidopsis thaliana. On the basis of an analysis of transcripts with coding regions, we find the majority of overlapping gene pairs to be convergently overlapping pairs (COPs), with the potential for dsRNA formation. In all tissues, COP transcripts are present at a higher frequency compared to the overall gene pool. The probability that both the sense and antisense copy of a COP are co-transcribed matches the theoretical value for coexpression under the assumption that the expression of one partner does not affect the expression of the other. Among COPs, we observe an over-representation of spliced (intron-containing) genes (90%) and of genes with alternatively spliced transcripts. For loci where antisense transcripts overlap with sense transcript introns, we also find a significant bias in favor of alternative splicing and variation of polyadenylation.
CONCLUSION:
The results argue against a predominant RNA degradation effect induced by dsRNA formation. Instead, our data support alternative roles for dsRNAs. They suggest that at least for a subgroup of COPs, antisense expression may induce alternative splicing or polyadenylation
Rational Approximate Symmetries of KdV Equation
We construct one-parameter deformation of the Dorfman Hamiltonian operator
for the Riemann hierarchy using the quasi-Miura transformation from topological
field theory. In this way, one can get the approximately rational symmetries of
KdV equation and then investigate its bi-Hamiltonian structure.Comment: 14 pages, no figure
Vagus nerve stimulation paired with tactile training improved sensory function in a chronic stroke patient
Background: Recent studies indicate that vagus nerve stimulation (VNS) paired with rehabilitation can enhance neural plasticity in the primary sensory and motor cortices, improve forelimb function after stroke in animal models and improve motor function in patients with arm weakness after stroke. OBJECTIVE:To gain “first-in-man” experience of VNS paired with tactile training in a patient with severe sensory impairment after stroke. Methods: During the long-term follow-up phase of a clinical trial of VNS paired with motor rehabilitation, a 71-year-old man who had made good motor recovery had ongoing severe sensory loss in his left hand and arm. He received VNS paired with tactile therapy in an attempt to improve his sensory function. During twenty 2-hour sessions, each passive and active tactile event was paired with a 0.5 second burst of 0.8 mA VNS. Sensory function was measured before, halfway through, and after this therapy. Results: The patient did not report any side effects during or following VNS+Tactile therapy. Quantitative measures revealed lasting and clinically meaningful improvements in tactile threshold, proprioception, and stereognosis. After VNS+Tactile therapy, the patient was able to detect tactile stimulation to his affected hand that was eight times less intense, identify the joint position of his fingers in the affected hand three times more often, and identify everyday objects using his affected hand seven times more often, compared to baseline. Conclusions: Sensory function significantly improved in this man following VNS paired with tactile stimulation. This approach merits further study in controlled clinical trials
Parental Co‐Construction of 5‐ to 13‐Year‐Olds\u27 Global Self‐Esteem Through Reminiscing About Past Events
The current study explored parental processes associated with children\u27s global self‐esteem development. Eighty 5‐ to 13‐year‐olds and one of their parents provided qualitative and quantitative data through questionnaires, open‐ended questions, and a laboratory‐based reminiscing task. Parents who included more explanations of emotions when writing about the lowest points in their lives were more likely to discuss explanations of emotions experienced in negative past events with their child, which was associated with child attachment security. Attachment was associated with concurrent self‐esteem, which predicted relative increases in self‐esteem 16 months later, on average. Finally, parent support also predicted residual increases in self‐esteem. Findings extend prior research by including younger ages and uncovering a process by which two theoretically relevant parenting behaviors impact self‐esteem development
Recommended from our members
STIM1, PKC-δ and RasGRP set a threshold for proapoptotic Erk signaling during B cell development.
Clonal deletion of autoreactive B cells is crucial for the prevention of autoimmunity, but the signaling mechanisms that regulate this checkpoint remain undefined. Here we characterize a previously unrecognized Ca(2+)-driven pathway for activation of the kinase Erk, which was proapoptotic and biochemically distinct from Erk activation induced by diacylglycerol (DAG). This pathway required protein kinase C-δ (PKC-δ) and the guanine nucleotide-exchange factor RasGRP and depended on the concentration of the Ca(2+) sensor STIM1, which controls the magnitude of Ca(2+) entry. Developmental regulation of these proteins was associated with selective activation of the pathway in B cells prone to negative selection. This checkpoint was impaired in PKC-δ-deficient mice, which developed B cell autoimmunity. Conversely, overexpression of STIM1 conferred a competitive disadvantage to developing B cells. Our findings establish Ca(2+)-dependent Erk signaling as a critical proapoptotic pathway that mediates the negative selection of B cells
Recommended from our members
Stemness factor Sall4 is required for DNA damage response in embryonic stem cells.
Mouse embryonic stem cells (ESCs) are genetically more stable than somatic cells, thereby preventing the passage of genomic abnormalities to their derivatives including germ cells. The underlying mechanisms, however, remain largely unclear. In this paper, we show that the stemness factor Sall4 is required for activating the critical Ataxia Telangiectasia Mutated (ATM)-dependent cellular responses to DNA double-stranded breaks (DSBs) in mouse ESCs and confer their resistance to DSB-induced cytotoxicity. Sall4 is rapidly mobilized to the sites of DSBs after DNA damage. Furthermore, Sall4 interacts with Rad50 and stabilizes the Mre11-Rad50-Nbs1 complex for the efficient recruitment and activation of ATM. Sall4 also interacts with Baf60a, a member of the SWI/SNF (switch/sucrose nonfermentable) ATP-dependent chromatin-remodeling complex, which is responsible for recruiting Sall4 to the site of DNA DSB damage. Our findings provide novel mechanisms to coordinate stemness of ESCs with DNA damage response, ensuring genomic stability during the expansion of ESCs
SHARP -- VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars
We present an analysis of seven strongly gravitationally lensed quasars and
the corresponding constraints on the properties of dark matter. Our results are
derived by modelling the lensed image positions and flux-ratios using a
combination of smooth macro models and a population of low-mass haloes within
the mass range 10^6 to 10^9 Msun. Our lens models explicitly include
higher-order complexity in the form of stellar discs and luminous satellites,
as well as low-mass haloes located along the observed lines of sight for the
first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average
total mass fraction in substructure of f_sub = 0.012^{+0.007}_{-0.004} (68 per
cent confidence limits), which is in agreement with the predictions from CDM
hydrodynamical simulations to within 1 sigma. This result is closer to the
predictions than those from previous studies that did not include line-of-sight
haloes. Under the assumption of a thermal relic dark matter model, we derive a
lower limit on the particle relic mass of m th > 5.58 keV (95 per cent
confidence limits), which is consistent with a value of m_th > 5.3 keV from the
recent analysis of the Ly-alpha forest. We also identify two main sources of
possible systematic errors and conclude that deeper investigations in the
complex structure of lens galaxies as well as the size of the background
sources should be a priority for this field.Comment: 14 pages, 7 figures, accepted for publication in MNRA
- …
